BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 33289562)

  • 1. Yeasts Induce Acetaldehyde Production in Wine Micro-oxygenation Treatments.
    Ji J; Henschen CW; Nguyen TH; Ma L; Waterhouse AL
    J Agric Food Chem; 2020 Dec; 68(51):15216-15227. PubMed ID: 33289562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Yeast alter micro-oxygenation of wine: oxygen consumption and aldehyde production.
    Han G; Webb MR; Richter C; Parsons J; Waterhouse AL
    J Sci Food Agric; 2017 Aug; 97(11):3847-3854. PubMed ID: 28182290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetaldehyde reactions during wine bottle storage.
    Han G; Webb MR; Waterhouse AL
    Food Chem; 2019 Aug; 290():208-215. PubMed ID: 31000039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fermentative and post-fermentative oxygenation of Corvina red wine: influence on phenolic and volatile composition, colour and wine oxidative response.
    Picariello L; Slaghenaufi D; Ugliano M
    J Sci Food Agric; 2020 Apr; 100(6):2522-2533. PubMed ID: 31960975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micro-oxygenation of red wine: techniques, applications, and outcomes.
    Schmidtke LM; Clark AC; Scollary GR
    Crit Rev Food Sci Nutr; 2011 Feb; 51(2):115-31. PubMed ID: 21328108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetaldehyde kinetics of enological yeast during alcoholic fermentation in grape must.
    Li E; Mira de Orduña R
    J Ind Microbiol Biotechnol; 2017 Feb; 44(2):229-236. PubMed ID: 27896529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of closure, phenolic levels and microoxygenation on Cabernet Sauvignon wine composition after 5 years' bottle storage.
    Han G; Ugliano M; Currie B; Vidal S; Diéval JB; Waterhouse AL
    J Sci Food Agric; 2015 Jan; 95(1):36-43. PubMed ID: 24737051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of the pre-fermentative addition of chitosan on the nitrogenous fraction and the secondary fermentation products of SO
    Marchante L; Mena A; Izquierdo-Cañas PM; García-Romero E; Pérez-Coello MS; Díaz-Maroto MC
    J Sci Food Agric; 2021 Feb; 101(3):1143-1149. PubMed ID: 32789849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Astringency, bitterness and color changes in dry red wines before and during oak barrel aging: An updated phenolic perspective review.
    Li SY; Duan CQ
    Crit Rev Food Sci Nutr; 2019; 59(12):1840-1867. PubMed ID: 29381384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxygen and SO
    Carrascón V; Bueno M; Fernandez-Zurbano P; Ferreira V
    J Agric Food Chem; 2017 Nov; 65(43):9488-9495. PubMed ID: 28965399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxygen Consumption by Red Wines. Part I: Consumption Rates, Relationship with Chemical Composition, and Role of SO₂.
    Ferreira V; Carrascon V; Bueno M; Ugliano M; Fernandez-Zurbano P
    J Agric Food Chem; 2015 Dec; 63(51):10928-37. PubMed ID: 26654524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding microoxygenation: Effect of viable yeasts and sulfur dioxide levels on the sensory properties of a Merlot red wine.
    Sáenz-Navajas MP; Henschen C; Cantu A; Watrelot AA; Waterhouse AL
    Food Res Int; 2018 Jun; 108():505-515. PubMed ID: 29735086
    [No Abstract]   [Full Text] [Related]  

  • 13. Oxygen Consumption by Red Wines. Part II: Differential Effects on Color and Chemical Composition Caused by Oxygen Taken in Different Sulfur Dioxide-Related Oxidation Contexts.
    Carrascon V; Fernandez-Zurbano P; Bueno M; Ferreira V
    J Agric Food Chem; 2015 Dec; 63(51):10938-47. PubMed ID: 26646423
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of free and sulfur-dioxide-bound acetaldehyde by malolactic lactic acid bacteria in white wine.
    Osborne JP; Dubé Morneau A; Mira de Orduña R
    J Appl Microbiol; 2006 Aug; 101(2):474-9. PubMed ID: 16882156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring acetaldehyde concentrations during micro-oxygenation of red wine by headspace solid-phase microextraction with on-fiber derivatization.
    Carlton WK; Gump B; Fugelsang K; Hasson AS
    J Agric Food Chem; 2007 Jul; 55(14):5620-5. PubMed ID: 17567026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microoxidation in wine production.
    Kilmartin PA
    Adv Food Nutr Res; 2010; 61():149-86. PubMed ID: 21092904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct NMR evidence for the dissociation of sulfur-dioxide-bound acetaldehyde under acidic conditions: Impact on wines oxidative stability.
    Tachtalidou S; Sok N; Denat F; Noret L; Schmit-Kopplin P; Nikolantonaki M; Gougeon RD
    Food Chem; 2022 Mar; 373(Pt B):131679. PubMed ID: 34865920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Oxygen Management during the Post-Fermentation Stage on Acetaldehyde, Color, and Phenolics of
    Dai L; Sun Y; Liu M; Cui X; Wang J; Li J; Han G
    Molecules; 2022 Oct; 27(19):. PubMed ID: 36235228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exogenous acetaldehyde as a tool for modulating wine color and astringency during fermentation.
    Sheridan MK; Elias RJ
    Food Chem; 2015 Jun; 177():17-22. PubMed ID: 25660852
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Acetaldehyde metabolism by wine lactic acid bacteria.
    Osborne JP; Mira de Orduña R; Pilone GJ; Liu SQ
    FEMS Microbiol Lett; 2000 Oct; 191(1):51-5. PubMed ID: 11004399
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.