BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 33289737)

  • 1. Accelerating innovation and commercialization through standardization of microfluidic-based medical devices.
    Reyes DR; van Heeren H; Guha S; Herbertson L; Tzannis AP; Ducrée J; Bissig H; Becker H
    Lab Chip; 2021 Jan; 21(1):9-21. PubMed ID: 33289737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overcoming technological barriers in microfluidics: Leakage testing.
    Silverio V; Guha S; Keiser A; Natu R; Reyes DR; van Heeren H; Verplanck N; Herbertson LH
    Front Bioeng Biotechnol; 2022; 10():958582. PubMed ID: 36159671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Paper based microfluidics: A forecast toward the most affordable and rapid point-of-care devices.
    Sinha A; Basu M; Chandna P
    Prog Mol Biol Transl Sci; 2022; 186(1):109-158. PubMed ID: 35033281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Challenges and opportunities in micro/nanofluidic and lab-on-a-chip.
    Verma N; Pandya A
    Prog Mol Biol Transl Sci; 2022; 186(1):289-302. PubMed ID: 35033289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double-Sided Tape in Microfluidics: A Cost-Effective Method in Device Fabrication.
    Smith S; Sypabekova M; Kim S
    Biosensors (Basel); 2024 May; 14(5):. PubMed ID: 38785723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid development and optimization of paper microfluidic designs using software automation.
    Potter J; Brisk P; Grover WH
    Anal Chim Acta; 2021 Nov; 1184():338985. PubMed ID: 34625247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Standardisation needs for organ on chip devices.
    Piergiovanni M; Leite SB; Corvi R; Whelan M
    Lab Chip; 2021 Aug; 21(15):2857-2868. PubMed ID: 34251386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Piezoresistive Conductive Microfluidic Membranes for Low-Cost On-Chip Pressure and Flow Sensing.
    Islam MN; Doria SM; Fu X; Gagnon ZR
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A survey of 3D printing technology applied to paper microfluidics.
    Fu E; Wentland L
    Lab Chip; 2021 Dec; 22(1):9-25. PubMed ID: 34897346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D printed microfluidics for biological applications.
    Ho CM; Ng SH; Li KH; Yoon YJ
    Lab Chip; 2015; 15(18):3627-37. PubMed ID: 26237523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic devices for the detection of disease-specific proteins and other macromolecules, disease modelling and drug development: A review.
    Amir S; Arathi A; Reshma S; Mohanan PV
    Int J Biol Macromol; 2023 Apr; 235():123784. PubMed ID: 36822284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lab-on-a-Chip Electrochemical Biosensors for Foodborne Pathogen Detection: A Review of Common Standards and Recent Progress.
    Zolti O; Suganthan B; Ramasamy RP
    Biosensors (Basel); 2023 Feb; 13(2):. PubMed ID: 36831981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Commercialization of microfluidic devices.
    Volpatti LR; Yetisen AK
    Trends Biotechnol; 2014 Jul; 32(7):347-50. PubMed ID: 24954000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Systematic Analysis of Recent Technology Trends of Microfluidic Medical Devices in the United States.
    Natu R; Herbertson L; Sena G; Strachan K; Guha S
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging Trends in Microfluidics Based Devices.
    Solanki S; Pandey CM; Gupta RK; Malhotra BD
    Biotechnol J; 2020 May; 15(5):e1900279. PubMed ID: 32045505
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic Devices as Process Development Tools for Cellular Therapy Manufacturing.
    Aranda Hernandez J; Heuer C; Bahnemann J; Szita N
    Adv Biochem Eng Biotechnol; 2022; 179():101-127. PubMed ID: 34410457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanotechnology-assisted microfluidic systems: from bench to bedside.
    Rabiee N; Ahmadi S; Fatahi Y; Rabiee M; Bagherzadeh M; Dinarvand R; Bagheri B; Zarrintaj P; Saeb MR; Webster TJ
    Nanomedicine (Lond); 2021 Feb; 16(3):237-258. PubMed ID: 33501839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic Point-of-Care (POC) Devices in Early Diagnosis: A Review of Opportunities and Challenges.
    Yang SM; Lv S; Zhang W; Cui Y
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Digital Manufacturing for Microfluidics.
    Naderi A; Bhattacharjee N; Folch A
    Annu Rev Biomed Eng; 2019 Jun; 21():325-364. PubMed ID: 31167099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications.
    Mark D; Haeberle S; Roth G; von Stetten F; Zengerle R
    Chem Soc Rev; 2010 Mar; 39(3):1153-82. PubMed ID: 20179830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.