These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 33290051)

  • 41. Sensitive monitoring of RNA transcription by optical amplification of cationic conjugated polymers.
    Li Z; Guo H; Xu F; Tang W; Duan X
    Talanta; 2019 Oct; 203():314-321. PubMed ID: 31202345
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Orthogonal Protein-Responsive mRNA Switches for Mammalian Synthetic Biology.
    Ono H; Kawasaki S; Saito H
    ACS Synth Biol; 2020 Jan; 9(1):169-174. PubMed ID: 31765565
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Higher Order Constitutional Dynamic Networks: [2×3] and [3×3] Networks Displaying Multiple, Synergistic and Competitive Hierarchical Adaptation.
    Men G; Lehn JM
    J Am Chem Soc; 2017 Feb; 139(6):2474-2483. PubMed ID: 28145690
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biotechnological production of cyclic dinucleotides-Challenges and opportunities.
    Bartsch T; Becker M; Rolf J; Rosenthal K; Lütz S
    Biotechnol Bioeng; 2022 Mar; 119(3):677-684. PubMed ID: 34953086
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gene position more strongly influences cell-free protein expression from operons than T7 transcriptional promoter strength.
    Chizzolini F; Forlin M; Cecchi D; Mansy SS
    ACS Synth Biol; 2014 Jun; 3(6):363-71. PubMed ID: 24283192
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chemical synthesis, purification, and characterization of 3'-5'-linked canonical cyclic dinucleotides (CDNs).
    Wang C; Hao M; Qi Q; Chen Y; Hartig JS
    Methods Enzymol; 2019; 625():41-59. PubMed ID: 31455536
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Redesigning the type II' β-turn in green fluorescent protein to type I': implications for folding kinetics and stability.
    Madan B; Sokalingam S; Raghunathan G; Lee SG
    Proteins; 2014 Oct; 82(10):2812-22. PubMed ID: 25044033
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multiplexed analysis of genes and of metal ions using enzyme/DNAzyme amplification machineries.
    Freage L; Wang F; Orbach R; Willner I
    Anal Chem; 2014 Nov; 86(22):11326-33. PubMed ID: 25369533
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of encoded Broccoli RNA aptamers for live cell imaging of alphavirus genomic and subgenomic RNAs.
    Nilaratanakul V; Hauer DA; Griffin DE
    Sci Rep; 2020 Mar; 10(1):5233. PubMed ID: 32251299
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Cloning and Detection of Aptamer-Ribozyme Conjugations.
    Goguen RP; Gatignol A; Scarborough RJ
    Methods Mol Biol; 2021; 2167():253-267. PubMed ID: 32712924
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Labeling RNAs in Live Cells Using Malachite Green Aptamer Scaffolds as Fluorescent Probes.
    Yerramilli VS; Kim KH
    ACS Synth Biol; 2018 Mar; 7(3):758-766. PubMed ID: 29513000
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Single-strand promoter traps for bacterial RNA polymerase.
    Pupov D; Esyunina D; Feklistov A; Kulbachinskiy A
    Biochem J; 2013 Jun; 452(2):241-8. PubMed ID: 23517087
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Crystal structures of porcine STING
    Cong X; Yuan Z; Du Y; Wu B; Lu D; Wu X; Zhang Y; Li F; Wei B; Li J; Wu J; Xu S; Wang J; Qi J; Shang G; Gu L
    J Biol Chem; 2019 Jul; 294(30):11420-11432. PubMed ID: 31167783
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Live-cell imaging of small nucleolar RNA tagged with the broccoli aptamer in yeast.
    Zinskie JA; Roig M; Janetopoulos C; Myers KA; Bruist MF
    FEMS Yeast Res; 2018 Dec; 18(8):. PubMed ID: 30137288
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Polymerization nicking-triggered LAMP cascades enable exceptional signal amplification for aptamer-based label-free detection of trace proteins in human serum.
    Zhang T; Xu L; Jiang B; Yuan R; Xiang Y
    Anal Chim Acta; 2020 Feb; 1098():164-169. PubMed ID: 31948580
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Engineering Light-Up Aptamers for the Detection of RNA Hairpins through Kissing Interaction.
    Sett A; Zara L; Dausse E; Toulmé JJ
    Anal Chem; 2020 Jul; 92(13):9113-9117. PubMed ID: 32498509
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Modeling Gene Expression Instability by Programmed and Switchable Polymerization/Nicking DNA Nanomachineries.
    Zhou Z; Fan D; Willner I
    ACS Nano; 2020 Apr; 14(4):5046-5052. PubMed ID: 32250590
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fluorogenic RNA Aptamers: A Nano-platform for Fabrication of Simple and Combinatorial Logic Gates.
    Goldsworthy V; LaForce G; Abels S; Khisamutdinov EF
    Nanomaterials (Basel); 2018 Nov; 8(12):. PubMed ID: 30486495
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ribosome profiling-guided depletion of an mRNA increases cell growth rate and protein secretion.
    Kallehauge TB; Li S; Pedersen LE; Ha TK; Ley D; Andersen MR; Kildegaard HF; Lee GM; Lewis NE
    Sci Rep; 2017 Jan; 7():40388. PubMed ID: 28091612
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Switchable Triggered Interconversion and Reconfiguration of DNA Origami Dimers and Their Use for Programmed Catalysis.
    Wang J; Zhou Z; Yue L; Wang S; Willner I
    Nano Lett; 2018 Apr; 18(4):2718-2724. PubMed ID: 29537286
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.