BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 33290065)

  • 1. Engineered LPMO Significantly Boosting Cellulase-Catalyzed Depolymerization of Cellulose.
    Cheng C; Haider J; Liu P; Yang J; Tan Z; Huang T; Lin J; Jiang M; Liu H; Zhu L
    J Agric Food Chem; 2020 Dec; 68(51):15257-15266. PubMed ID: 33290065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-Dependent Relationship between Catalytic Activity and Hydrogen Peroxide Production Shown via Characterization of a Lytic Polysaccharide Monooxygenase from
    Hegnar OA; Petrovic DM; Bissaro B; Alfredsen G; Várnai A; Eijsink VGH
    Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Linker Region Promotes Activity and Binding Efficiency of Modular LPMO towards Polymeric Substrate.
    Srivastava A; Nagar P; Rathore S; Adlakha N
    Microbiol Spectr; 2022 Feb; 10(1):e0269721. PubMed ID: 35080440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic Action of a Lytic Polysaccharide Monooxygenase and a Cellobiohydrolase from
    Ogunyewo OA; Randhawa A; Gupta M; Kaladhar VC; Verma PK; Yazdani SS
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-molecule study of oxidative enzymatic deconstruction of cellulose.
    Eibinger M; Sattelkow J; Ganner T; Plank H; Nidetzky B
    Nat Commun; 2017 Oct; 8(1):894. PubMed ID: 29026070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellulose surface degradation by a lytic polysaccharide monooxygenase and its effect on cellulase hydrolytic efficiency.
    Eibinger M; Ganner T; Bubner P; Rošker S; Kracher D; Haltrich D; Ludwig R; Plank H; Nidetzky B
    J Biol Chem; 2014 Dec; 289(52):35929-38. PubMed ID: 25361767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and molecular dynamics studies of a C1-oxidizing lytic polysaccharide monooxygenase from Heterobasidion irregulare reveal amino acids important for substrate recognition.
    Liu B; Kognole AA; Wu M; Westereng B; Crowley MF; Kim S; Dimarogona M; Payne CM; Sandgren M
    FEBS J; 2018 Jun; 285(12):2225-2242. PubMed ID: 29660793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the Enzymatic Activity and Stability of a Lytic Polysaccharide Monooxygenase.
    Berhe MH; Song X; Yao L
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced in situ H
    Stepnov AA; Eijsink VGH; Forsberg Z
    Sci Rep; 2022 Apr; 12(1):6129. PubMed ID: 35414104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. C-type cytochrome-initiated reduction of bacterial lytic polysaccharide monooxygenases.
    Branch J; Rajagopal BS; Paradisi A; Yates N; Lindley PJ; Smith J; Hollingsworth K; Turnbull WB; Henrissat B; Parkin A; Berry A; Hemsworth GR
    Biochem J; 2021 Jul; 478(14):2927-2944. PubMed ID: 34240737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes.
    Kojima Y; Várnai A; Ishida T; Sunagawa N; Petrovic DM; Igarashi K; Jellison J; Goodell B; Alfredsen G; Westereng B; Eijsink VG; Yoshida M
    Appl Environ Microbiol; 2016 Nov; 82(22):6557-6572. PubMed ID: 27590806
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insights into the H
    Qin X; Yang K; Wang X; Tu T; Wang Y; Zhang J; Su X; Yao B; Huang H; Luo H
    J Agric Food Chem; 2023 May; 71(21):8104-8111. PubMed ID: 37204864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The synergy between LPMOs and cellulases in enzymatic saccharification of cellulose is both enzyme- and substrate-dependent.
    Tokin R; Ipsen JØ; Westh P; Johansen KS
    Biotechnol Lett; 2020 Oct; 42(10):1975-1984. PubMed ID: 32458293
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled depolymerization of cellulose by light-driven lytic polysaccharide oxygenases.
    Bissaro B; Kommedal E; Røhr ÅK; Eijsink VGH
    Nat Commun; 2020 Feb; 11(1):890. PubMed ID: 32060276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of a native lytic polysaccharide monooxygenase from Thermoascus aurantiacus.
    Fritsche S; Hopson C; Gorman J; Gabriel R; Singer SW
    Biotechnol Lett; 2020 Oct; 42(10):1897-1905. PubMed ID: 32557119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights into the H
    Hedison TM; Breslmayr E; Shanmugam M; Karnpakdee K; Heyes DJ; Green AP; Ludwig R; Scrutton NS; Kracher D
    FEBS J; 2021 Jul; 288(13):4115-4128. PubMed ID: 33411405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering chitinolytic activity into a cellulose-active lytic polysaccharide monooxygenase provides insights into substrate specificity.
    Jensen MS; Klinkenberg G; Bissaro B; Chylenski P; Vaaje-Kolstad G; Kvitvang HF; Nærdal GK; Sletta H; Forsberg Z; Eijsink VGH
    J Biol Chem; 2019 Dec; 294(50):19349-19364. PubMed ID: 31656228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of lytic polysaccharide monooxygenase oxidation on cellulose structure and binding of oxidized cellulose oligomers to cellulases.
    Vermaas JV; Crowley MF; Beckham GT; Payne CM
    J Phys Chem B; 2015 May; 119(20):6129-43. PubMed ID: 25785779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advances in lytic polysaccharide monooxygenases with the cellulose-degrading auxiliary activity family 9 to facilitate cellulose degradation for biorefinery.
    Long L; Hu Y; Sun F; Gao W; Hao Z; Yin H
    Int J Biol Macromol; 2022 Oct; 219():68-83. PubMed ID: 35931294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polysaccharide degradation by lytic polysaccharide monooxygenases.
    Forsberg Z; Sørlie M; Petrović D; Courtade G; Aachmann FL; Vaaje-Kolstad G; Bissaro B; Røhr ÅK; Eijsink VG
    Curr Opin Struct Biol; 2019 Dec; 59():54-64. PubMed ID: 30947104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.