These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 33290226)

  • 1. Wearable MMG-Plus-One Armband: Evaluation of Normal Force on Mechanomyography (MMG) to Enhance Human-Machine Interfacing.
    Castillo CSM; Wilson S; Vaidyanathan R; Atashzar SF
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():196-205. PubMed ID: 33290226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergistic Upper-Limb Functional Muscle Connectivity Using Acoustic Mechanomyography.
    Castillo CSM; Vaidyanathan R; Atashzar SF
    IEEE Trans Biomed Eng; 2022 Aug; 69(8):2569-2580. PubMed ID: 35157572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Coupled Piezoelectric Sensor for MMG-Based Human-Machine Interfaces.
    Szumilas M; Władziński M; Wildner K
    Sensors (Basel); 2021 Dec; 21(24):. PubMed ID: 34960465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recognition of forearm muscle activity by continuous classification of multi-site mechanomyogram signals.
    Alves N; Chau T
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3531-4. PubMed ID: 21097038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fatigue effect on cross-talk in mechanomyography signals of extensor and flexor forearm muscles during maximal voluntary isometric contractions.
    Mohamad Ismail MR; Lam CK; Sundaraj K; Rahiman MHF
    J Musculoskelet Neuronal Interact; 2021 Dec; 21(4):481-494. PubMed ID: 34854387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of sensor mass and adipose tissue on the mechanomyography signal of elbow flexor muscles.
    Santos E; Fernandes Vara MF; Ranciaro M; Strasse W; Nunes Nogueira Neto G; Nohama P
    J Biomech; 2021 Jun; 122():110456. PubMed ID: 33962326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upper-limb prosthetic control using wearable multichannel mechanomyography.
    Wilson S; Vaidyanathan R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1293-1298. PubMed ID: 28813999
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of elbow spasticity with surface electromyography and mechanomyography based on support vector machine.
    Hui Wang ; Lei Wang ; Yun Xiang ; Ning Zhao ; Xiangxin Li ; Shixiong Chen ; Chuang Lin ; Guanglin Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():3860-3863. PubMed ID: 29060740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Piezoresistive Sensor to Measure Muscle Contraction and Mechanomyography.
    Esposito D; Andreozzi E; Fratini A; Gargiulo GD; Savino S; Niola V; Bifulco P
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30081541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A preliminary investigation assessing the viability of classifying hand postures in seniors.
    Tavakolan M; Xiao ZG; Menon C
    Biomed Eng Online; 2011 Sep; 10():79. PubMed ID: 21906316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncovering patterns of forearm muscle activity using multi-channel mechanomyography.
    Alves N; Chau T
    J Electromyogr Kinesiol; 2010 Oct; 20(5):777-86. PubMed ID: 19854064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time continuous recognition of knee motion using multi-channel mechanomyography signals detected on clothes.
    Wu H; Wang D; Huang Q; Gao L
    J Electromyogr Kinesiol; 2018 Feb; 38():94-102. PubMed ID: 29182965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Piezoresistive Array Armband With Reduced Number of Sensors for Hand Gesture Recognition.
    Esposito D; Andreozzi E; Gargiulo GD; Fratini A; D'Addio G; Naik GR; Bifulco P
    Front Neurorobot; 2019; 13():114. PubMed ID: 32009926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. User-Independent Hand Gesture Recognition Classification Models Using Sensor Fusion.
    Colli Alfaro JG; Trejos AL
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of motion artifact on mechanomyography: A comparative study of microphones and accelerometers.
    Posatskiy AO; Chau T
    J Electromyogr Kinesiol; 2012 Apr; 22(2):320-4. PubMed ID: 22019815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of accelerometer location on the classification of single-site forearm mechanomyograms.
    Alves N; Sejdić E; Sahota B; Chau T
    Biomed Eng Online; 2010 Jun; 9():23. PubMed ID: 20537154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tablet form factors and swipe gesture designs affect thumb biomechanics and performance during two-handed use.
    Coppola SM; Lin MYC; Schilkowsky J; Arezes PM; Dennerlein JT
    Appl Ergon; 2018 May; 69():40-46. PubMed ID: 29477328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A preliminary study of classification of upper limb motions and forces based on mechanomyography.
    Zhang Y; Xia C
    Med Eng Phys; 2020 Jul; 81():97-104. PubMed ID: 32507673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Feature Optimization for Wearable Human-Computer Interfaces Using Surface Electromyography Sensors.
    Sun H; Zhang X; Zhao Y; Zhang Y; Zhong X; Fan Z
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29543737
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of surgical skill using machine learning with optimal wearable sensor locations.
    Soangra R; Sivakumar R; Anirudh ER; Reddy Y SV; John EB
    PLoS One; 2022; 17(6):e0267936. PubMed ID: 35657912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.