BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 33290262)

  • 21. Bortezomib suppresses acute myelogenous leukaemia stem-like KG-1a cells via NF-κB inhibition and the induction of oxidative stress.
    Costa RGA; Oliveira MS; Rodrigues ACBDC; Silva SLR; Dias IRSB; Soares MBP; de Faro Valverde L; Gurgel Rocha CA; Dias RB; Bezerra DP
    J Cell Mol Med; 2024 Apr; 28(8):e18333. PubMed ID: 38652192
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficacious proteasome/HDAC inhibitor combination therapy for primary effusion lymphoma.
    Bhatt S; Ashlock BM; Toomey NL; Diaz LA; Mesri EA; Lossos IS; Ramos JC
    J Clin Invest; 2013 Jun; 123(6):2616-28. PubMed ID: 23635777
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The γ-secretase inhibitor GSI-I interacts synergistically with the proteasome inhibitor bortezomib to induce ALK+ anaplastic large cell lymphoma cell apoptosis.
    Dang Q; Chen L; Xu M; You X; Zhou H; Zhang Y; Shi W
    Cell Signal; 2019 Jul; 59():76-84. PubMed ID: 30878517
    [TBL] [Abstract][Full Text] [Related]  

  • 24. TM-233, a novel analog of 1'-acetoxychavicol acetate, induces cell death in myeloma cells by inhibiting both JAK/STAT and proteasome activities.
    Sagawa M; Tabayashi T; Kimura Y; Tomikawa T; Nemoto-Anan T; Watanabe R; Tokuhira M; Ri M; Hashimoto Y; Iida S; Kizaki M
    Cancer Sci; 2015 Apr; 106(4):438-46. PubMed ID: 25613668
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Combinations of proteasome inhibitors with obatoclax are effective for small cell lung cancer.
    Yin YP; Shi WH; Deng K; Liu XL; Li H; Lv XT; Lui VWY; Ding C; Hong B; Lin WC
    Acta Pharmacol Sin; 2021 Aug; 42(8):1298-1310. PubMed ID: 33139838
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The preclinical discovery and development of bortezomib for the treatment of mantle cell lymphoma.
    Arkwright R; Pham TM; Zonder JA; Dou QP
    Expert Opin Drug Discov; 2017 Feb; 12(2):225-235. PubMed ID: 27917682
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functionalized europium-doped hollow mesoporous silica nanospheres as a cell imaging and drug delivery agents.
    Shi G; Li Z; Zhang Z; Yin Q; Li N; Wang S; Qi G; Hao L
    Biochem Biophys Res Commun; 2023 Sep; 674():1-9. PubMed ID: 37392717
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitotic catastrophe and cell cycle arrest are alternative cell death pathways executed by bortezomib in rituximab resistant B-cell lymphoma cells.
    Gu JJ; Kaufman GP; Mavis C; Czuczman MS; Hernandez-Ilizaliturri FJ
    Oncotarget; 2017 Feb; 8(8):12741-12753. PubMed ID: 28055975
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intracellular redox-activated anticancer drug delivery by functionalized hollow mesoporous silica nanoreservoirs with tumor specificity.
    Luo Z; Hu Y; Cai K; Ding X; Zhang Q; Li M; Ma X; Zhang B; Zeng Y; Li P; Li J; Liu J; Zhao Y
    Biomaterials; 2014 Sep; 35(27):7951-62. PubMed ID: 24930850
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ATF4 destabilizes RET through nonclassical GRP78 inhibition to enhance chemosensitivity to bortezomib in human osteosarcoma.
    Luo J; Xia Y; Yin Y; Luo J; Liu M; Zhang H; Zhang C; Zhao Y; Yang L; Kong L
    Theranostics; 2019; 9(21):6334-6353. PubMed ID: 31534554
    [No Abstract]   [Full Text] [Related]  

  • 31. Utilization of Lipid-based Nanoparticles to Improve the Therapeutic Benefits of Bortezomib.
    Korani M; Korani S; Zendehdel E; Jaafari MR; Sathyapalan T; Sahebkar A
    Anticancer Agents Med Chem; 2020; 20(6):643-650. PubMed ID: 31985384
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabricating polydopamine-coated MoSe
    Chai S; Kan S; Sun R; Zhou R; Sun Y; Chen W; Yu B
    Int J Nanomedicine; 2018; 13():7607-7621. PubMed ID: 30510420
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aerosol technique-based carbon-encapsulated hollow mesoporous silica nanoparticles for synergistic chemo-photothermal therapy.
    Gautam M; Thapa RK; Poudel BK; Gupta B; Ruttala HB; Nguyen HT; Soe ZC; Ou W; Poudel K; Choi HG; Ku SK; Yong CS; Kim JO
    Acta Biomater; 2019 Apr; 88():448-461. PubMed ID: 30818051
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Glycine-Poly-L-Lactic Acid Copolymeric Nanoparticles for the Efficient Delivery of Bortezomib.
    Rajoria S; Rani S; Chaudhari D; Jain S; Gupta U
    Pharm Res; 2019 Sep; 36(11):160. PubMed ID: 31520196
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hollow Mesoporous Silica Nanoparticles Gated by Chitosan-Copper Sulfide Composites as Theranostic Agents for the Treatment of Breast Cancer.
    Niu S; Zhang X; Williams GR; Wu J; Gao F; Fu Z; Chen X; Lu S; Zhu LM
    Acta Biomater; 2021 May; 126():408-420. PubMed ID: 33731303
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bortezomib reverses the proliferative and antiapoptotic effect of neuropeptides on prostate cancer cells.
    Tsapakidis K; Vlachostergios PJ; Voutsadakis IA; Befani CD; Patrikidou A; Hatzidaki E; Daliani DD; Moutzouris G; Liakos P; Papandreou CN
    Int J Urol; 2012 Jun; 19(6):565-74. PubMed ID: 22324515
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nuclear Export of Ubiquitinated Proteins Determines the Sensitivity of Colorectal Cancer to Proteasome Inhibitor.
    Wu T; Chen W; Zhong Y; Hou X; Fang S; Liu CY; Wang G; Yu T; Huang YY; Ouyang X; Li HQ; Cui L; Yang Y
    Mol Cancer Ther; 2017 Apr; 16(4):717-728. PubMed ID: 27903750
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CircRNA ITCH increases bortezomib sensitivity through regulating the miR-615-3p/PRKCD axis in multiple myeloma.
    Liu J; Du F; Chen C; Li D; Chen Y; Xiao X; Hou X
    Life Sci; 2020 Dec; 262():118506. PubMed ID: 33031827
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ZHX2 mediates proteasome inhibitor resistance via regulating nuclear translocation of NF-κB in multiple myeloma.
    Jiang J; Sun Y; Xu J; Xu T; Xu Z; Liu P
    Cancer Med; 2020 Oct; 9(19):7244-7252. PubMed ID: 32780537
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synergistic activity of bortezomib and HDACi in preclinical models of B-cell precursor acute lymphoblastic leukemia via modulation of p53, PI3K/AKT, and NF-κB.
    Bastian L; Hof J; Pfau M; Fichtner I; Eckert C; Henze G; Prada J; von Stackelberg A; Seeger K; Shalapour S
    Clin Cancer Res; 2013 Mar; 19(6):1445-57. PubMed ID: 23357978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.