BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 33290549)

  • 1. Structural basis for the substrate specificity and catalytic features of pseudouridine kinase from Arabidopsis thaliana.
    Kim SH; Witte CP; Rhee S
    Nucleic Acids Res; 2021 Jan; 49(1):491-503. PubMed ID: 33290549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Substrate-binding loop interactions with pseudouridine trigger conformational changes that promote catalytic efficiency of pseudouridine kinase PUKI.
    Kim SH; Kim M; Park D; Byun S; Rhee S
    J Biol Chem; 2022 May; 298(5):101869. PubMed ID: 35346685
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Riggs JW; Callis J
    Biochem J; 2017 May; 474(11):1789-1801. PubMed ID: 28377494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and function of the pseudouridine 5'-monophosphate glycosylase PUMY from
    Lee J; Kim SH; Rhee S
    RNA Biol; 2024 Jan; 21(1):1-10. PubMed ID: 38117089
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure and mutational analyses of ribokinase from Arabidopsis thaliana.
    Kang PA; Oh J; Lee H; Witte CP; Rhee S
    J Struct Biol; 2019 Apr; 206(1):110-118. PubMed ID: 30822455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arabidopsis seryl-tRNA synthetase: the first crystal structure and novel protein interactor of plant aminoacyl-tRNA synthetase.
    Kekez M; Zanki V; Kekez I; Baranasic J; Hodnik V; Duchêne AM; Anderluh G; Gruic-Sovulj I; Matković-Čalogović D; Weygand-Durasevic I; Rokov-Plavec J
    FEBS J; 2019 Feb; 286(3):536-554. PubMed ID: 30570212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of LL-diaminopimelate aminotransferase from Arabidopsis thaliana: a recently discovered enzyme in the biosynthesis of L-lysine by plants and Chlamydia.
    Watanabe N; Cherney MM; van Belkum MJ; Marcus SL; Flegel MD; Clay MD; Deyholos MK; Vederas JC; James MN
    J Mol Biol; 2007 Aug; 371(3):685-702. PubMed ID: 17583737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of Arabidopsis thaliana 5-methylthioribose kinase reveals a more occluded active site than its bacterial homolog.
    Ku SY; Cornell KA; Howell PL
    BMC Struct Biol; 2007 Oct; 7():70. PubMed ID: 17961230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural studies and protein engineering of inositol phosphate multikinase.
    Endo-Streeter S; Tsui MM; Odom AR; Block J; York JD
    J Biol Chem; 2012 Oct; 287(42):35360-35369. PubMed ID: 22896696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural features of human inositol phosphate multikinase rationalize its inositol phosphate kinase and phosphoinositide 3-kinase activities.
    Wang H; Shears SB
    J Biol Chem; 2017 Nov; 292(44):18192-18202. PubMed ID: 28882892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of catalytically important amino acid residues for enzymatic reduction of glyoxylate in plants.
    Hoover GJ; Jørgensen R; Rochon A; Bajwa VS; Merrill AR; Shelp BJ
    Biochim Biophys Acta; 2013 Dec; 1834(12):2663-71. PubMed ID: 24076009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal Structures of Putative Sugar Kinases from Synechococcus Elongatus PCC 7942 and Arabidopsis Thaliana.
    Xie Y; Li M; Chang W
    PLoS One; 2016; 11(5):e0156067. PubMed ID: 27223615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of the catalytic core of inositol 1,4,5-trisphosphate 3-kinase.
    Miller GJ; Hurley JH
    Mol Cell; 2004 Sep; 15(5):703-11. PubMed ID: 15350215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural insights into the mechanism defining substrate affinity in Arabidopsis thaliana dUTPase: the role of tryptophan 93 in ligand orientation.
    Inoguchi N; Chaiseeda K; Yamanishi M; Kim MK; Jang Y; Bajaj M; Chia CP; Becker DF; Moriyama H
    BMC Res Notes; 2015 Dec; 8():784. PubMed ID: 26666293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of an ancestral ADP-dependent kinase with fructose-6P reveals key residues for binding, catalysis, and ligand-induced conformational changes.
    Muñoz SM; Castro-Fernandez V; Guixé V
    J Biol Chem; 2021; 296():100219. PubMed ID: 33839685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the highly efficient catalysis of prokaryotic peptide deformylases by shedding light on the determinants specifying the low activity of the human counterpart.
    Fieulaine S; Desmadril M; Meinnel T; Giglione C
    Acta Crystallogr D Biol Crystallogr; 2014 Feb; 70(Pt 2):242-52. PubMed ID: 24531459
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The structure of a glycoside hydrolase 29 family member from a rumen bacterium reveals unique, dual carbohydrate-binding domains.
    Summers EL; Moon CD; Atua R; Arcus VL
    Acta Crystallogr F Struct Biol Commun; 2016 Oct; 72(Pt 10):750-761. PubMed ID: 27710940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the Arabidopsis glucan phosphatase like sex four2 reveals a unique mechanism for starch dephosphorylation.
    Meekins DA; Guo HF; Husodo S; Paasch BC; Bridges TM; Santelia D; Kötting O; Vander Kooi CW; Gentry MS
    Plant Cell; 2013 Jun; 25(6):2302-14. PubMed ID: 23832589
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Conformational States Dictate Selectivity toward the Native Substrate in a Substrate-Permissive Acyltransferase.
    Levsh O; Chiang YC; Tung CF; Noel JP; Wang Y; Weng JK
    Biochemistry; 2016 Nov; 55(45):6314-6326. PubMed ID: 27805809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of substrate recognition and PLP-induced conformational changes in LL-diaminopimelate aminotransferase from Arabidopsis thaliana.
    Watanabe N; Clay MD; van Belkum MJ; Cherney MM; Vederas JC; James MN
    J Mol Biol; 2008 Dec; 384(5):1314-29. PubMed ID: 18952095
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.