These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 33290656)

  • 1. Strong Transient Flows Generated by Thermoplasmonic Bubble Nucleation.
    Jones S; Andrén D; Antosiewicz TJ; Stilgoe A; Rubinsztein-Dunlop H; Käll M
    ACS Nano; 2020 Dec; 14(12):17468-17475. PubMed ID: 33290656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast Modulation of Thermoplasmonic Nanobubbles in Water.
    Jones S; Andrén D; Antosiewicz TJ; Käll M
    Nano Lett; 2019 Nov; 19(11):8294-8302. PubMed ID: 31647867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quasi-stokeslet induced by thermoplasmonic Marangoni effect around a water vapor microbubble.
    Namura K; Nakajima K; Suzuki M
    Sci Rep; 2017 Mar; 7():45776. PubMed ID: 28361949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Giant and explosive plasmonic bubbles by delayed nucleation.
    Wang Y; Zaytsev ME; Lajoinie G; The HL; Eijkel JCT; van den Berg A; Versluis M; Weckhuysen BM; Zhang X; Zandvliet HJW; Lohse D
    Proc Natl Acad Sci U S A; 2018 Jul; 115(30):7676-7681. PubMed ID: 29997175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direction control of quasi-stokeslet induced by thermoplasmonic heating of a water vapor microbubble.
    Namura K; Imafuku S; Kumar S; Nakajima K; Sakakura M; Suzuki M
    Sci Rep; 2019 Mar; 9(1):4770. PubMed ID: 30886312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermocapillarity in Microfluidics-A Review.
    Karbalaei A; Kumar R; Cho HJ
    Micromachines (Basel); 2016 Jan; 7(1):. PubMed ID: 30407386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasmonic Bubble Nucleation and Growth in Water: Effect of Dissolved Air.
    Li X; Wang Y; Zaytsev ME; Lajoinie G; Le The H; Bomer JG; Eijkel JCT; Zandvliet HJW; Zhang X; Lohse D
    J Phys Chem C Nanomater Interfaces; 2019 Sep; 123(38):23586-23593. PubMed ID: 31583035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plasmonic Bubble Nucleation in Binary Liquids.
    Detert M; Zeng B; Wang Y; Le The H; Zandvliet HJW; Lohse D
    J Phys Chem C Nanomater Interfaces; 2020 Jan; 124(4):2591-2597. PubMed ID: 32030112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of acoustic droplet vaporization for control of bubble generation under flow conditions.
    Kang ST; Huang YL; Yeh CK
    Ultrasound Med Biol; 2014 Mar; 40(3):551-61. PubMed ID: 24433748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An approach of bubble generation and manipulation by using the photothermal effects of laser irradiation on light absorbing particles.
    Li BW; He JW; Bai W; Wang HD; Ji F; Zhong MC
    Rev Sci Instrum; 2021 Nov; 92(11):114902. PubMed ID: 34852507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Periodic bouncing of a plasmonic bubble in a binary liquid by competing solutal and thermal Marangoni forces.
    Zeng B; Chong KL; Wang Y; Diddens C; Li X; Detert M; Zandvliet HJW; Lohse D
    Proc Natl Acad Sci U S A; 2021 Jun; 118(23):. PubMed ID: 34088844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micropumping of liquid by directional growth and selective venting of gas bubbles.
    Meng DD; Kim CJ
    Lab Chip; 2008 Jun; 8(6):958-68. PubMed ID: 18497918
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanisms of nuclei growth in ultrasound bubble nucleation.
    de Andrade MO; Haqshenas R; Pahk KJ; Saffari N
    Ultrason Sonochem; 2022 Aug; 88():106091. PubMed ID: 35839705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Driving Forces of the Bubble-Driven Tubular Micromotor Based on the Full Life-Cycle of the Bubble.
    Lin Y; Geng X; Chi Q; Wang C; Wang Z
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31234370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optically Driven Gold Nanoparticles Seed Surface Bubble Nucleation in Plasmonic Suspension.
    Zhang Q; Li R; Lee E; Luo T
    Nano Lett; 2021 Jul; 21(13):5485-5492. PubMed ID: 33939430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bubble nucleation in simple and molecular liquids via the largest spherical cavity method.
    Gonzalez MA; Abascal JL; Valeriani C; Bresme F
    J Chem Phys; 2015 Apr; 142(15):154903. PubMed ID: 25903906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of transition from thermal- to solutal-Marangoni flow in dilute alcohol/water mixtures using nano-plasmonic heaters.
    Namura K; Nakajima K; Suzuki M
    Nanotechnology; 2018 Feb; 29(6):065201. PubMed ID: 29251265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-Guided Surface Plasmonic Bubble Movement via Contact Line De-Pinning by In-Situ Deposited Plasmonic Nanoparticle Heating.
    Zhang Q; Pang Y; Schiffbauer J; Jemcov A; Chang HC; Lee E; Luo T
    ACS Appl Mater Interfaces; 2019 Dec; 11(51):48525-48532. PubMed ID: 31794181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple improvements to classical bubble nucleation models.
    Tanaka KK; Tanaka H; Angélil R; Diemand J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022401. PubMed ID: 26382410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly and complex manipulation of colloidal mesoscopic particles by active thermocapillary stress.
    Ghosh S; Biswas A; Roy B; Banerjee A
    Soft Matter; 2019 Jun; 15(23):4703-4713. PubMed ID: 31119243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.