BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 33290745)

  • 1. Molecular Co-occupancy Identifies Transcription Factor Binding Cooperativity In Vivo.
    Sönmezer C; Kleinendorst R; Imanci D; Barzaghi G; Villacorta L; Schübeler D; Benes V; Molina N; Krebs AR
    Mol Cell; 2021 Jan; 81(2):255-267.e6. PubMed ID: 33290745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide quantification of transcription factor binding at single-DNA-molecule resolution using methyl-transferase footprinting.
    Kleinendorst RWD; Barzaghi G; Smith ML; Zaugg JB; Krebs AR
    Nat Protoc; 2021 Dec; 16(12):5673-5706. PubMed ID: 34773120
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cooperative binding between distant transcription factors is a hallmark of active enhancers.
    Rao S; Ahmad K; Ramachandran S
    Mol Cell; 2021 Apr; 81(8):1651-1665.e4. PubMed ID: 33705711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global mapping of protein-DNA interactions in vivo by digital genomic footprinting.
    Hesselberth JR; Chen X; Zhang Z; Sabo PJ; Sandstrom R; Reynolds AP; Thurman RE; Neph S; Kuehn MS; Noble WS; Fields S; Stamatoyannopoulos JA
    Nat Methods; 2009 Apr; 6(4):283-9. PubMed ID: 19305407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying cooperative transcription factors in yeast using multiple data sources.
    Lai FJ; Jhu MH; Chiu CC; Huang YM; Wu WS
    BMC Syst Biol; 2014; 8 Suppl 5(Suppl 5):S2. PubMed ID: 25559499
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleosome-mediated cooperativity between transcription factors.
    Mirny LA
    Proc Natl Acad Sci U S A; 2010 Dec; 107(52):22534-9. PubMed ID: 21149679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo genomic footprinting using LM-PCR methods.
    Tagoh H; Cockerill PN; Bonifer C
    Methods Mol Biol; 2006; 325():285-314. PubMed ID: 16761734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of nucleosome binding preferences and co-occurring DNA sequences to transcription factor binding.
    He X; Chatterjee R; John S; Bravo H; Sathyanarayana BK; Biddie SC; FitzGerald PC; Stamatoyannopoulos JA; Hager GL; Vinson C
    BMC Genomics; 2013 Jun; 14():428. PubMed ID: 23805837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A saturating mutagenesis CRISPR-Cas9-mediated functional genomic screen identifies
    Canver MC; Tripathi P; Bullen MJ; Olshansky M; Kumar Y; Wong LH; Turner SJ; Lessard S; Pinello L; Orkin SH; Das PP
    J Biol Chem; 2020 Nov; 295(47):15797-15809. PubMed ID: 32994224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mapping of nucleosomes and regulatory protein binding sites at the Saccharomyces cerevisiae MFA2 gene: a high resolution approach.
    Teng Y; Yu S; Waters R
    Nucleic Acids Res; 2001 Jul; 29(13):E64-4. PubMed ID: 11433040
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studying transcription factor function in the genome at molecular resolution.
    Krebs AR
    Trends Genet; 2021 Sep; 37(9):798-806. PubMed ID: 33892959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular and structural considerations of TF-DNA binding for the generation of biologically meaningful and accurate phylogenetic footprinting analysis: the LysR-type transcriptional regulator family as a study model.
    Oliver P; Peralta-Gil M; Tabche ML; Merino E
    BMC Genomics; 2016 Aug; 17(1):686. PubMed ID: 27567672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of Nucleosome Architecture and Factor Binding Revealed by Nuclease Footprinting of the ESC Genome.
    Hainer SJ; Fazzio TG
    Cell Rep; 2015 Oct; 13(1):61-69. PubMed ID: 26411677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into distinct regulatory modes of nucleosome positioning.
    Dai Z; Dai X; Xiang Q; Feng J; Deng Y; Wang J
    BMC Genomics; 2009 Dec; 10():602. PubMed ID: 20003404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleosome organization in the vicinity of transcription factor binding sites in the human genome.
    Nie Y; Cheng X; Chen J; Sun X
    BMC Genomics; 2014 Jun; 15(1):493. PubMed ID: 24942981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Blurring of high-resolution data shows that the effect of intrinsic nucleosome occupancy on transcription factor binding is mostly regional, not local.
    Goh WS; Orlov Y; Li J; Clarke ND
    PLoS Comput Biol; 2010 Jan; 6(1):e1000649. PubMed ID: 20098497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topography of the ISW2-nucleosome complex: insights into nucleosome spacing and chromatin remodeling.
    Kagalwala MN; Glaus BJ; Dang W; Zofall M; Bartholomew B
    EMBO J; 2004 May; 23(10):2092-104. PubMed ID: 15131696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PlantDHS: a database for DNase I hypersensitive sites in plants.
    Zhang T; Marand AP; Jiang J
    Nucleic Acids Res; 2016 Jan; 44(D1):D1148-53. PubMed ID: 26400163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple distinct stimuli increase measured nucleosome occupancy around human promoters.
    Pham CD; Sims HI; Archer TK; Schnitzler GR
    PLoS One; 2011; 6(8):e23490. PubMed ID: 21853138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. HSA21 Single-Minded 2 (Sim2) Binding Sites Co-Localize with Super-Enhancers and Pioneer Transcription Factors in Pluripotent Mouse ES Cells.
    Letourneau A; Cobellis G; Fort A; Santoni F; Garieri M; Falconnet E; Ribaux P; Vannier A; Guipponi M; Carninci P; Borel C; Antonarakis SE
    PLoS One; 2015; 10(5):e0126475. PubMed ID: 25955728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.