BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 33290947)

  • 1. Mechanobiological evaluation of prostate cancer metastasis to bone using an in vitro prostate cancer testbed.
    Molla MS; Katti DR; Katti KS
    J Biomech; 2021 Jan; 114():110142. PubMed ID: 33290947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro design of mesenchymal to epithelial transition of prostate cancer metastasis using 3D nanoclay bone-mimetic scaffolds.
    Molla MS; Katti DR; Katti KS
    J Tissue Eng Regen Med; 2018 Mar; 12(3):727-737. PubMed ID: 28603879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of quasi-static and dynamic nanomechanical properties of bone-metastatic breast cancer cells using a nanoclay cancer testbed.
    Kar S; Katti DR; Katti KS
    Sci Rep; 2021 Feb; 11(1):3096. PubMed ID: 33542384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collapsin response mediator protein-1 (CRMP1) acts as an invasion and metastasis suppressor of prostate cancer via its suppression of epithelial-mesenchymal transition and remodeling of actin cytoskeleton organization.
    Cai G; Wu D; Wang Z; Xu Z; Wong KB; Ng CF; Chan FL; Yu S
    Oncogene; 2017 Jan; 36(4):546-558. PubMed ID: 27321179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bone interface modulates drug resistance in breast cancer bone metastasis.
    Kar S; Katti DR; Katti KS
    Colloids Surf B Biointerfaces; 2020 Nov; 195():111224. PubMed ID: 32634713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free discrimination of tumorigenesis stages using in vitro prostate cancer bone metastasis model by Raman imaging.
    Kar S; Jaswandkar SV; Katti KS; Kang JW; So PTC; Paulmurugan R; Liepmann D; Venkatesan R; Katti DR
    Sci Rep; 2022 May; 12(1):8050. PubMed ID: 35577856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue-engineered 3D models for elucidating primary and metastatic bone cancer progression.
    González Díaz EC; Sinha S; Avedian RS; Yang F
    Acta Biomater; 2019 Nov; 99():18-32. PubMed ID: 31419564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of collagen-based scaffolds to simulate prostate cancer bone metastases with potential for evaluating delivery of nanoparticulate gene therapeutics.
    Fitzgerald KA; Guo J; Tierney EG; Curtin CM; Malhotra M; Darcy R; O'Brien FJ; O'Driscoll CM
    Biomaterials; 2015 Oct; 66():53-66. PubMed ID: 26196533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perfusion bioreactor enabled fluid-derived shear stress conditions for novel bone metastatic prostate cancer testbed.
    Jasuja H; Kar S; Katti DR; Katti KS
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33418550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. miR-154* and miR-379 in the DLK1-DIO3 microRNA mega-cluster regulate epithelial to mesenchymal transition and bone metastasis of prostate cancer.
    Gururajan M; Josson S; Chu GC; Lu CL; Lu YT; Haga CL; Zhau HE; Liu C; Lichterman J; Duan P; Posadas EM; Chung LW
    Clin Cancer Res; 2014 Dec; 20(24):6559-69. PubMed ID: 25324143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone metastasis in prostate cancer: Recurring mitochondrial DNA mutation reveals selective pressure exerted by the bone microenvironment.
    Arnold RS; Fedewa SA; Goodman M; Osunkoya AO; Kissick HT; Morrissey C; True LD; Petros JA
    Bone; 2015 Sep; 78():81-6. PubMed ID: 25952970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue-engineered nanoclay-based 3D in vitro breast cancer model for studying breast cancer metastasis to bone.
    Kar S; Molla MS; Katti DR; Katti KS
    J Tissue Eng Regen Med; 2019 Feb; 13(2):119-130. PubMed ID: 30466156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavior of prostate cancer cells in a nanohydroxyapatite/collagen bone scaffold.
    Cruz-Neves S; Ribeiro N; Graça I; Jerónimo C; Sousa SR; Monteiro FJ
    J Biomed Mater Res A; 2017 Jul; 105(7):2035-2046. PubMed ID: 28371333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The aldehyde dehydrogenase enzyme 7A1 is functionally involved in prostate cancer bone metastasis.
    van den Hoogen C; van der Horst G; Cheung H; Buijs JT; Pelger RC; van der Pluijm G
    Clin Exp Metastasis; 2011 Oct; 28(7):615-25. PubMed ID: 21647815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased expression of putative cancer stem cell markers in the bone marrow of prostate cancer patients is associated with bone metastasis progression.
    Ricci E; Mattei E; Dumontet C; Eaton CL; Hamdy F; van der Pluije G; Cecchini M; Thalmann G; Clezardin P; Colombel M
    Prostate; 2013 Dec; 73(16):1738-46. PubMed ID: 24115186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Canine prostatic cancer cell line (LuMa) with osteoblastic bone metastasis.
    Elshafae SM; Dirksen WP; Alasonyalilar-Demirer A; Breitbach J; Yuan S; Kantake N; Supsavhad W; Hassan BB; Attia Z; Alstadt LB; Rosol TJ
    Prostate; 2020 Jun; 80(9):698-714. PubMed ID: 32348616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. miR-409-3p/-5p promotes tumorigenesis, epithelial-to-mesenchymal transition, and bone metastasis of human prostate cancer.
    Josson S; Gururajan M; Hu P; Shao C; Chu GY; Zhau HE; Liu C; Lao K; Lu CL; Lu YT; Lichterman J; Nandana S; Li Q; Rogatko A; Berel D; Posadas EM; Fazli L; Sareen D; Chung LW
    Clin Cancer Res; 2014 Sep; 20(17):4636-46. PubMed ID: 24963047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Severe combined immunodeficient-hu model of human prostate cancer metastasis to human bone.
    Nemeth JA; Harb JF; Barroso U; He Z; Grignon DJ; Cher ML
    Cancer Res; 1999 Apr; 59(8):1987-93. PubMed ID: 10213511
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In search of the correlation between nanomechanical and biomolecular properties of prostate cancer cells with different metastatic potential.
    Pogoda K; Pięta E; Roman M; Piergies N; Liberda D; Wróbel TP; Janmey PA; Paluszkiewicz C; Kwiatek WM
    Arch Biochem Biophys; 2021 Jan; 697():108718. PubMed ID: 33296690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. LIV-1 promotes prostate cancer epithelial-to-mesenchymal transition and metastasis through HB-EGF shedding and EGFR-mediated ERK signaling.
    Lue HW; Yang X; Wang R; Qian W; Xu RZ; Lyles R; Osunkoya AO; Zhou BP; Vessella RL; Zayzafoon M; Liu ZR; Zhau HE; Chung LW
    PLoS One; 2011; 6(11):e27720. PubMed ID: 22110740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.