These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 33291018)

  • 1. A brain-inspired network architecture for cost-efficient object recognition in shallow hierarchical neural networks.
    Park Y; Baek S; Paik SB
    Neural Netw; 2021 Feb; 134():76-85. PubMed ID: 33291018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Species-specific wiring of cortical circuits for small-world networks in the primary visual cortex.
    Baek S; Park Y; Paik SB
    PLoS Comput Biol; 2023 Aug; 19(8):e1011343. PubMed ID: 37540638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved object recognition using neural networks trained to mimic the brain's statistical properties.
    Federer C; Xu H; Fyshe A; Zylberberg J
    Neural Netw; 2020 Nov; 131():103-114. PubMed ID: 32771841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence.
    Cichy RM; Khosla A; Pantazis D; Torralba A; Oliva A
    Sci Rep; 2016 Jun; 6():27755. PubMed ID: 27282108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recurrent Connections in the Primate Ventral Visual Stream Mediate a Trade-Off Between Task Performance and Network Size During Core Object Recognition.
    Nayebi A; Sagastuy-Brena J; Bear DM; Kar K; Kubilius J; Ganguli S; Sussillo D; DiCarlo JJ; Yamins DLK
    Neural Comput; 2022 Jul; 34(8):1652-1675. PubMed ID: 35798321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-resolved correspondences between deep neural network layers and EEG measurements in object processing.
    Kong NCL; Kaneshiro B; Yamins DLK; Norcia AM
    Vision Res; 2020 Jul; 172():27-45. PubMed ID: 32388211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Ventral Visual Pathway Represents Animal Appearance over Animacy, Unlike Human Behavior and Deep Neural Networks.
    Bracci S; Ritchie JB; Kalfas I; Op de Beeck HP
    J Neurosci; 2019 Aug; 39(33):6513-6525. PubMed ID: 31196934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depth in convolutional neural networks solves scene segmentation.
    Seijdel N; Tsakmakidis N; de Haan EHF; Bohte SM; Scholte HS
    PLoS Comput Biol; 2020 Jul; 16(7):e1008022. PubMed ID: 32706770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Causal importance of low-level feature selectivity for generalization in image recognition.
    Ukita J
    Neural Netw; 2020 May; 125():185-193. PubMed ID: 32145648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visual Object Recognition: Do We (Finally) Know More Now Than We Did?
    Gauthier I; Tarr MJ
    Annu Rev Vis Sci; 2016 Oct; 2():377-396. PubMed ID: 28532357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MouseNet: A biologically constrained convolutional neural network model for the mouse visual cortex.
    Shi J; Tripp B; Shea-Brown E; Mihalas S; A Buice M
    PLoS Comput Biol; 2022 Sep; 18(9):e1010427. PubMed ID: 36067234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deciphering image contrast in object classification deep networks.
    Akbarinia A; Gil-Rodríguez R
    Vision Res; 2020 Aug; 173():61-76. PubMed ID: 32480109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of biologically grounded models of the early visual system on standard object recognition tasks.
    Teichmann M; Larisch R; Hamker FH
    Neural Netw; 2021 Dec; 144():210-228. PubMed ID: 34507042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementing artificial neural networks through bionic construction.
    He H; Yang X; Xu Z; Deng N; Shang Y; Liu G; Ji M; Zheng W; Zhao J; Dong L
    PLoS One; 2019; 14(2):e0212368. PubMed ID: 30794587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance-optimized hierarchical models predict neural responses in higher visual cortex.
    Yamins DL; Hong H; Cadieu CF; Solomon EA; Seibert D; DiCarlo JJ
    Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8619-24. PubMed ID: 24812127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual interaction networks: A novel bio-inspired computational model for image classification.
    Wei B; He H; Hao K; Gao L; Tang XS
    Neural Netw; 2020 Oct; 130():100-110. PubMed ID: 32652433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Invariance of object detection in untrained deep neural networks.
    Cheon J; Baek S; Paik SB
    Front Comput Neurosci; 2022; 16():1030707. PubMed ID: 36405785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Qualitative similarities and differences in visual object representations between brains and deep networks.
    Jacob G; Pramod RT; Katti H; Arun SP
    Nat Commun; 2021 Mar; 12(1):1872. PubMed ID: 33767141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Visual Cortex-Inspired Imaging-Sensor Architecture and Its Application in Real-Time Processing.
    Wei H; Wang L
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30004415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Number detectors spontaneously emerge in a deep neural network designed for visual object recognition.
    Nasr K; Viswanathan P; Nieder A
    Sci Adv; 2019 May; 5(5):eaav7903. PubMed ID: 31086820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.