BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 33291018)

  • 1. A brain-inspired network architecture for cost-efficient object recognition in shallow hierarchical neural networks.
    Park Y; Baek S; Paik SB
    Neural Netw; 2021 Feb; 134():76-85. PubMed ID: 33291018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Species-specific wiring of cortical circuits for small-world networks in the primary visual cortex.
    Baek S; Park Y; Paik SB
    PLoS Comput Biol; 2023 Aug; 19(8):e1011343. PubMed ID: 37540638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved object recognition using neural networks trained to mimic the brain's statistical properties.
    Federer C; Xu H; Fyshe A; Zylberberg J
    Neural Netw; 2020 Nov; 131():103-114. PubMed ID: 32771841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence.
    Cichy RM; Khosla A; Pantazis D; Torralba A; Oliva A
    Sci Rep; 2016 Jun; 6():27755. PubMed ID: 27282108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recurrent Connections in the Primate Ventral Visual Stream Mediate a Trade-Off Between Task Performance and Network Size During Core Object Recognition.
    Nayebi A; Sagastuy-Brena J; Bear DM; Kar K; Kubilius J; Ganguli S; Sussillo D; DiCarlo JJ; Yamins DLK
    Neural Comput; 2022 Jul; 34(8):1652-1675. PubMed ID: 35798321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-resolved correspondences between deep neural network layers and EEG measurements in object processing.
    Kong NCL; Kaneshiro B; Yamins DLK; Norcia AM
    Vision Res; 2020 Jul; 172():27-45. PubMed ID: 32388211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Ventral Visual Pathway Represents Animal Appearance over Animacy, Unlike Human Behavior and Deep Neural Networks.
    Bracci S; Ritchie JB; Kalfas I; Op de Beeck HP
    J Neurosci; 2019 Aug; 39(33):6513-6525. PubMed ID: 31196934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Depth in convolutional neural networks solves scene segmentation.
    Seijdel N; Tsakmakidis N; de Haan EHF; Bohte SM; Scholte HS
    PLoS Comput Biol; 2020 Jul; 16(7):e1008022. PubMed ID: 32706770
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Causal importance of low-level feature selectivity for generalization in image recognition.
    Ukita J
    Neural Netw; 2020 May; 125():185-193. PubMed ID: 32145648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MouseNet: A biologically constrained convolutional neural network model for the mouse visual cortex.
    Shi J; Tripp B; Shea-Brown E; Mihalas S; A Buice M
    PLoS Comput Biol; 2022 Sep; 18(9):e1010427. PubMed ID: 36067234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual Object Recognition: Do We (Finally) Know More Now Than We Did?
    Gauthier I; Tarr MJ
    Annu Rev Vis Sci; 2016 Oct; 2():377-396. PubMed ID: 28532357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deciphering image contrast in object classification deep networks.
    Akbarinia A; Gil-Rodríguez R
    Vision Res; 2020 Aug; 173():61-76. PubMed ID: 32480109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of biologically grounded models of the early visual system on standard object recognition tasks.
    Teichmann M; Larisch R; Hamker FH
    Neural Netw; 2021 Dec; 144():210-228. PubMed ID: 34507042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementing artificial neural networks through bionic construction.
    He H; Yang X; Xu Z; Deng N; Shang Y; Liu G; Ji M; Zheng W; Zhao J; Dong L
    PLoS One; 2019; 14(2):e0212368. PubMed ID: 30794587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance-optimized hierarchical models predict neural responses in higher visual cortex.
    Yamins DL; Hong H; Cadieu CF; Solomon EA; Seibert D; DiCarlo JJ
    Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8619-24. PubMed ID: 24812127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual interaction networks: A novel bio-inspired computational model for image classification.
    Wei B; He H; Hao K; Gao L; Tang XS
    Neural Netw; 2020 Oct; 130():100-110. PubMed ID: 32652433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Invariance of object detection in untrained deep neural networks.
    Cheon J; Baek S; Paik SB
    Front Comput Neurosci; 2022; 16():1030707. PubMed ID: 36405785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Qualitative similarities and differences in visual object representations between brains and deep networks.
    Jacob G; Pramod RT; Katti H; Arun SP
    Nat Commun; 2021 Mar; 12(1):1872. PubMed ID: 33767141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Visual Cortex-Inspired Imaging-Sensor Architecture and Its Application in Real-Time Processing.
    Wei H; Wang L
    Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30004415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Number detectors spontaneously emerge in a deep neural network designed for visual object recognition.
    Nasr K; Viswanathan P; Nieder A
    Sci Adv; 2019 May; 5(5):eaav7903. PubMed ID: 31086820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.