These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence. Cichy RM; Khosla A; Pantazis D; Torralba A; Oliva A Sci Rep; 2016 Jun; 6():27755. PubMed ID: 27282108 [TBL] [Abstract][Full Text] [Related]
5. Recurrent Connections in the Primate Ventral Visual Stream Mediate a Trade-Off Between Task Performance and Network Size During Core Object Recognition. Nayebi A; Sagastuy-Brena J; Bear DM; Kar K; Kubilius J; Ganguli S; Sussillo D; DiCarlo JJ; Yamins DLK Neural Comput; 2022 Jul; 34(8):1652-1675. PubMed ID: 35798321 [TBL] [Abstract][Full Text] [Related]
6. Time-resolved correspondences between deep neural network layers and EEG measurements in object processing. Kong NCL; Kaneshiro B; Yamins DLK; Norcia AM Vision Res; 2020 Jul; 172():27-45. PubMed ID: 32388211 [TBL] [Abstract][Full Text] [Related]
7. The Ventral Visual Pathway Represents Animal Appearance over Animacy, Unlike Human Behavior and Deep Neural Networks. Bracci S; Ritchie JB; Kalfas I; Op de Beeck HP J Neurosci; 2019 Aug; 39(33):6513-6525. PubMed ID: 31196934 [TBL] [Abstract][Full Text] [Related]
9. Causal importance of low-level feature selectivity for generalization in image recognition. Ukita J Neural Netw; 2020 May; 125():185-193. PubMed ID: 32145648 [TBL] [Abstract][Full Text] [Related]
10. Visual Object Recognition: Do We (Finally) Know More Now Than We Did? Gauthier I; Tarr MJ Annu Rev Vis Sci; 2016 Oct; 2():377-396. PubMed ID: 28532357 [TBL] [Abstract][Full Text] [Related]
11. MouseNet: A biologically constrained convolutional neural network model for the mouse visual cortex. Shi J; Tripp B; Shea-Brown E; Mihalas S; A Buice M PLoS Comput Biol; 2022 Sep; 18(9):e1010427. PubMed ID: 36067234 [TBL] [Abstract][Full Text] [Related]
12. Deciphering image contrast in object classification deep networks. Akbarinia A; Gil-RodrÃguez R Vision Res; 2020 Aug; 173():61-76. PubMed ID: 32480109 [TBL] [Abstract][Full Text] [Related]
13. Performance of biologically grounded models of the early visual system on standard object recognition tasks. Teichmann M; Larisch R; Hamker FH Neural Netw; 2021 Dec; 144():210-228. PubMed ID: 34507042 [TBL] [Abstract][Full Text] [Related]
14. Implementing artificial neural networks through bionic construction. He H; Yang X; Xu Z; Deng N; Shang Y; Liu G; Ji M; Zheng W; Zhao J; Dong L PLoS One; 2019; 14(2):e0212368. PubMed ID: 30794587 [TBL] [Abstract][Full Text] [Related]
15. Performance-optimized hierarchical models predict neural responses in higher visual cortex. Yamins DL; Hong H; Cadieu CF; Solomon EA; Seibert D; DiCarlo JJ Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8619-24. PubMed ID: 24812127 [TBL] [Abstract][Full Text] [Related]
16. Visual interaction networks: A novel bio-inspired computational model for image classification. Wei B; He H; Hao K; Gao L; Tang XS Neural Netw; 2020 Oct; 130():100-110. PubMed ID: 32652433 [TBL] [Abstract][Full Text] [Related]
17. Invariance of object detection in untrained deep neural networks. Cheon J; Baek S; Paik SB Front Comput Neurosci; 2022; 16():1030707. PubMed ID: 36405785 [TBL] [Abstract][Full Text] [Related]
18. Qualitative similarities and differences in visual object representations between brains and deep networks. Jacob G; Pramod RT; Katti H; Arun SP Nat Commun; 2021 Mar; 12(1):1872. PubMed ID: 33767141 [TBL] [Abstract][Full Text] [Related]
19. A Visual Cortex-Inspired Imaging-Sensor Architecture and Its Application in Real-Time Processing. Wei H; Wang L Sensors (Basel); 2018 Jul; 18(7):. PubMed ID: 30004415 [TBL] [Abstract][Full Text] [Related]
20. Number detectors spontaneously emerge in a deep neural network designed for visual object recognition. Nasr K; Viswanathan P; Nieder A Sci Adv; 2019 May; 5(5):eaav7903. PubMed ID: 31086820 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]