These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33291687)

  • 1. Comparison of a Deep Learning-Based Pose Estimation System to Marker-Based and Kinect Systems in Exergaming for Balance Training.
    Vonstad EK; Su X; Vereijken B; Bach K; Nilsen JH
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33291687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance of machine learning models in estimation of ground reaction forces during balance exergaming.
    Vonstad EK; Bach K; Vereijken B; Su X; Nilsen JH
    J Neuroeng Rehabil; 2022 Feb; 19(1):18. PubMed ID: 35152877
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the Pose Tracking Performance of the Azure Kinect and Kinect v2 for Gait Analysis in Comparison with a Gold Standard: A Pilot Study.
    Albert JA; Owolabi V; Gebel A; Brahms CM; Granacher U; Arnrich B
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32911651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Suitability of Kinect for measuring whole body movement patterns during exergaming.
    van Diest M; Stegenga J; Wörtche HJ; Postema K; Verkerke GJ; Lamoth CJ
    J Biomech; 2014 Sep; 47(12):2925-32. PubMed ID: 25173920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A contactless method to measure real-time finger motion using depth-based pose estimation.
    Zhu Y; Lu W; Gan W; Hou W
    Comput Biol Med; 2021 Apr; 131():104282. PubMed ID: 33631496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications and limitations of current markerless motion capture methods for clinical gait biomechanics.
    Wade L; Needham L; McGuigan P; Bilzon J
    PeerJ; 2022; 10():e12995. PubMed ID: 35237469
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Movements of older adults during exergaming interventions that are associated with the Systems Framework for Postural Control: A systematic review.
    Tahmosybayat R; Baker K; Godfrey A; Caplan N; Barry G
    Maturitas; 2018 May; 111():90-99. PubMed ID: 29673837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel dataset and deep learning-based approach for marker-less motion capture during gait.
    Vafadar S; Skalli W; Bonnet-Lebrun A; Khalifé M; Renaudin M; Hamza A; Gajny L
    Gait Posture; 2021 May; 86():70-76. PubMed ID: 33711613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Physiological responses and enjoyment of Kinect-based exergames in older adults at risk for falls: A feasibility study.
    Ogawa E; Huang H; Yu LF; You T
    Technol Health Care; 2019; 27(4):353-362. PubMed ID: 31033470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of Kinect exergames on balance training among community older adults: A randomized controlled trial.
    Yang CM; Chen Hsieh JS; Chen YC; Yang SY; Lin HK
    Medicine (Baltimore); 2020 Jul; 99(28):e21228. PubMed ID: 32664177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Full-body motion assessment: Concurrent validation of two body tracking depth sensors versus a gold standard system during gait.
    Vilas-Boas MDC; Choupina HMP; Rocha AP; Fernandes JM; Cunha JPS
    J Biomech; 2019 Apr; 87():189-196. PubMed ID: 30914189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Erratum.
    Mult Scler; 2016 Oct; 22(12):NP9-NP11. PubMed ID: 26041800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy of a novel marker tracking approach based on the low-cost Microsoft Kinect v2 sensor.
    Timmi A; Coates G; Fortin K; Ackland D; Bryant AL; Gordon I; Pivonka P
    Med Eng Phys; 2018 Sep; 59():63-69. PubMed ID: 29983277
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing dynamic postural control during exergaming in older adults: A probabilistic approach.
    Soancatl Aguilar V; Lamoth CJC; Maurits NM; Roerdink JBTM
    Gait Posture; 2018 Feb; 60():235-240. PubMed ID: 29288962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Postural control assessment via Microsoft Azure Kinect DK: An evaluation study.
    Antico M; Balletti N; Laudato G; Lazich A; Notarantonio M; Oliveto R; Ricciardi S; Scalabrino S; Simeone J
    Comput Methods Programs Biomed; 2021 Sep; 209():106324. PubMed ID: 34375852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the impact of a motion capture system on Microsoft Kinect v2 recordings: A caution for using the technologies together.
    Naeemabadi M; Dinesen B; Andersen OK; Hansen J
    PLoS One; 2018; 13(9):e0204052. PubMed ID: 30216382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of deep learning pose estimates for sports collision tracking.
    Blythman R; Saxena M; Tierney GJ; Richter C; Smolic A; Simms C
    J Sports Sci; 2022 Sep; 40(17):1885-1900. PubMed ID: 36093680
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wii or Kinect? A Pilot Study of the Exergame Effects on Older Adults' Physical Fitness and Psychological Perception.
    Li J; Li L; Huo P; Ma C; Wang L; Theng YL
    Int J Environ Res Public Health; 2021 Dec; 18(24):. PubMed ID: 34948547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliability and concurrent validity of the Microsoft Xbox One Kinect for assessment of standing balance and postural control.
    Clark RA; Pua YH; Oliveira CC; Bower KJ; Thilarajah S; McGaw R; Hasanki K; Mentiplay BF
    Gait Posture; 2015 Jul; 42(2):210-3. PubMed ID: 26009500
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exergames for unsupervised balance training at home: A pilot study in healthy older adults.
    van Diest M; Stegenga J; Wörtche HJ; Verkerke GJ; Postema K; Lamoth CJ
    Gait Posture; 2016 Feb; 44():161-7. PubMed ID: 27004651
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.