These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Preparation and Characterization of a Series of Self-Healable Bio-Based Poly(thiourethane) Vitrimer-like Materials. Guerrero F; Ramis X; De la Flor S; Serra À Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987363 [TBL] [Abstract][Full Text] [Related]
3. Preparation and Characterization of Novel Poly(thiourethane)-Poly(isocyanurate) Covalent Adaptable Networks: Effect of the Catalysts. Guerrero F; De la Flor S; Serra À Macromol Rapid Commun; 2024 Oct; 45(19):e2400330. PubMed ID: 38924588 [TBL] [Abstract][Full Text] [Related]
5. Influence of Isocyanate Structure on Recyclable Shape Memory Poly(thiourethane). Zeng Y; Song J; Li J; Yuan C Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297174 [TBL] [Abstract][Full Text] [Related]
6. Actuator Behaviour of Tailored Poly(thiourethane) Shape Memory Thermosets. Gamardella F; Serra A; Ramis X; De la Flor S Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34068369 [TBL] [Abstract][Full Text] [Related]
7. Mechanisms of organocatalytic amidation and trans-esterification of aromatic esters as a model for the depolymerization of poly(ethylene) terephthalate. Horn HW; Jones GO; Wei DS; Fukushima K; Lecuyer JM; Coady DJ; Hedrick JL; Rice JE J Phys Chem A; 2012 Dec; 116(51):12389-98. PubMed ID: 23241219 [TBL] [Abstract][Full Text] [Related]
8. Reprocessible Triketoenamine-Based Vitrimers with Closed-Loop Recyclability. Hu Z; Hu F; Deng L; Yang Y; Xie Q; Gao Z; Pan C; Jin Y; Tang J; Yu G; Zhang W Angew Chem Int Ed Engl; 2023 Aug; 62(34):e202306039. PubMed ID: 37314932 [TBL] [Abstract][Full Text] [Related]
13. Elastomeric vitrimers from designer polyhydroxyalkanoates with recyclability and biodegradability. Cywar RM; Ling C; Clarke RW; Kim DH; Kneucker CM; Salvachúa D; Addison B; Hesse SA; Takacs CJ; Xu S; Demirtas MU; Woodworth SP; Rorrer NA; Johnson CW; Tassone CJ; Allen RD; Chen EY; Beckham GT Sci Adv; 2023 Nov; 9(47):eadi1735. PubMed ID: 37992173 [TBL] [Abstract][Full Text] [Related]
14. Spiroborate-Linked Ionic Covalent Adaptable Networks with Rapid Reprocessability and Closed-Loop Recyclability. Chen H; Hu Y; Luo C; Lei Z; Huang S; Wu J; Jin Y; Yu K; Zhang W J Am Chem Soc; 2023 Apr; 145(16):9112-9117. PubMed ID: 37058550 [TBL] [Abstract][Full Text] [Related]
15. Analysis of Poly(thiourethane) Covalent Adaptable Network through Broadband Dielectric Spectroscopy. Pascual-Jose B; De la Flor S; Serra A; Ribes-Greus A ACS Appl Polym Mater; 2023 Feb; 5(2):1125-1134. PubMed ID: 36817338 [TBL] [Abstract][Full Text] [Related]
16. The Impact of Vitrimers on the Industry of the Future: Chemistry, Properties and Sustainable Forward-Looking Applications. Alabiso W; Schlögl S Polymers (Basel); 2020 Jul; 12(8):. PubMed ID: 32722554 [TBL] [Abstract][Full Text] [Related]
17. Interfacial Compatibility of Core-Shell Cellulose Nanocrystals for Improving Dynamic Covalent Adaptable Networks' Fracture Resistance in Nanohybrid Vitrimer Composites. Sun J; Liang M; Yin L; Rivers G; Hu G; Pan Q; Zhao B ACS Appl Mater Interfaces; 2023 Aug; 15(33):39786-39796. PubMed ID: 37578445 [TBL] [Abstract][Full Text] [Related]
18. From Lignins to Renewable Aromatic Vitrimers based on Vinylogous Urethane. Sougrati L; Duval A; Avérous L ChemSusChem; 2023 Dec; 16(23):e202300792. PubMed ID: 37486785 [TBL] [Abstract][Full Text] [Related]
19. Designed from Biobased Materials for Recycling: Imine-Based Covalent Adaptable Networks. Liguori A; Hakkarainen M Macromol Rapid Commun; 2022 Jul; 43(13):e2100816. PubMed ID: 35080074 [TBL] [Abstract][Full Text] [Related]
20. Poly(thioether) Vitrimers via Transalkylation of Trialkylsulfonium Salts. Hendriks B; Waelkens J; Winne JM; Du Prez FE ACS Macro Lett; 2017 Sep; 6(9):930-934. PubMed ID: 35650893 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]