These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 33291724)
1. Microporosities in 3D-Printed Tricalcium-Phosphate-Based Bone Substitutes Enhance Osteoconduction and Affect Osteoclastic Resorption. Ghayor C; Chen TH; Bhattacharya I; Özcan M; Weber FE Int J Mol Sci; 2020 Dec; 21(23):. PubMed ID: 33291724 [TBL] [Abstract][Full Text] [Related]
2. 3D-Printed HA-Based Scaffolds for Bone Regeneration: Microporosity, Osteoconduction and Osteoclastic Resorption. Ghayor C; Bhattacharya I; Guerrero J; Özcan M; Weber FE Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207973 [TBL] [Abstract][Full Text] [Related]
3. In vitro: osteoclastic activity studies on surfaces of 3D printed calcium phosphate scaffolds. Detsch R; Schaefer S; Deisinger U; Ziegler G; Seitz H; Leukers B J Biomater Appl; 2011 Sep; 26(3):359-80. PubMed ID: 20659962 [TBL] [Abstract][Full Text] [Related]
4. Different post-processing conditions for 3D bioprinted α-tricalcium phosphate scaffolds. Bertol LS; Schabbach R; Loureiro Dos Santos LA J Mater Sci Mater Med; 2017 Sep; 28(10):168. PubMed ID: 28916883 [TBL] [Abstract][Full Text] [Related]
5. Development of bioinks for 3D printing microporous, sintered calcium phosphate scaffolds. Montelongo SA; Chiou G; Ong JL; Bizios R; Guda T J Mater Sci Mater Med; 2021 Aug; 32(8):94. PubMed ID: 34390404 [TBL] [Abstract][Full Text] [Related]
6. Direct 3D powder printing of biphasic calcium phosphate scaffolds for substitution of complex bone defects. Castilho M; Moseke C; Ewald A; Gbureck U; Groll J; Pires I; Teßmar J; Vorndran E Biofabrication; 2014 Mar; 6(1):015006. PubMed ID: 24429776 [TBL] [Abstract][Full Text] [Related]
7. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model. Tarafder S; Dernell WS; Bandyopadhyay A; Bose S J Biomed Mater Res B Appl Biomater; 2015 Apr; 103(3):679-90. PubMed ID: 25045131 [TBL] [Abstract][Full Text] [Related]
8. Three-Dimensional Extrusion Printing of Porous Scaffolds Using Storable Ceramic Inks. Diaz-Gomez L; Elizondo ME; Kontoyiannis PD; Koons GL; Dacunha-Marinho B; Zhang X; Ajayan P; Jansen JA; Melchiorri AJ; Mikos AG Tissue Eng Part C Methods; 2020 Jun; 26(6):292-305. PubMed ID: 32326874 [TBL] [Abstract][Full Text] [Related]
9. Strength reliability and in vitro degradation of three-dimensional powder printed strontium-substituted magnesium phosphate scaffolds. Meininger S; Mandal S; Kumar A; Groll J; Basu B; Gbureck U Acta Biomater; 2016 Feb; 31():401-411. PubMed ID: 26621692 [TBL] [Abstract][Full Text] [Related]
10. Scaffolds with a standardized macro-architecture fabricated from several calcium phosphate ceramics using an indirect rapid prototyping technique. Wilson CE; van Blitterswijk CA; Verbout AJ; Dhert WJ; de Bruijn JD J Mater Sci Mater Med; 2011 Jan; 22(1):97-105. PubMed ID: 21069558 [TBL] [Abstract][Full Text] [Related]
11. Enhanced In Vivo Bone and Blood Vessel Formation by Iron Oxide and Silica Doped 3D Printed Tricalcium Phosphate Scaffolds. Bose S; Banerjee D; Robertson S; Vahabzadeh S Ann Biomed Eng; 2018 Sep; 46(9):1241-1253. PubMed ID: 29728785 [TBL] [Abstract][Full Text] [Related]
12. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering. Tarafder S; Balla VK; Davies NM; Bandyopadhyay A; Bose S J Tissue Eng Regen Med; 2013 Aug; 7(8):631-41. PubMed ID: 22396130 [TBL] [Abstract][Full Text] [Related]
13. Reconsidering Osteoconduction in the Era of Additive Manufacturing. Weber FE Tissue Eng Part B Rev; 2019 Oct; 25(5):375-386. PubMed ID: 30997857 [TBL] [Abstract][Full Text] [Related]
14. Lattice Microarchitecture for Bone Tissue Engineering from Calcium Phosphate Compared to Titanium. Chen TH; Ghayor C; Siegenthaler B; Schuler F; Rüegg J; De Wild M; Weber FE Tissue Eng Part A; 2018 Oct; 24(19-20):1554-1561. PubMed ID: 29999466 [TBL] [Abstract][Full Text] [Related]
15. [Research on sintering process of tricalcium phosphate bone tissue engineering scaffold based on three-dimensional printing]. Man X; Suo H; Liu J; Xu M; Wang L Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Feb; 37(1):112-118. PubMed ID: 32096384 [TBL] [Abstract][Full Text] [Related]
16. 3D printed β-tricalcium phosphate versus synthetic bone mineral scaffolds: A comparative in vitro study of biocompatibility. Slavin BV; Mirsky NA; Stauber ZM; Nayak VV; Smay JE; Rivera CF; Mijares DQ; Coelho PG; Cronstein BN; Tovar N; Witek L Biomed Mater Eng; 2024; 35(4):365-375. PubMed ID: 38578877 [TBL] [Abstract][Full Text] [Related]
17. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique]. Lian Q; Zhuang P; Li C; Jin Z; Li D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010 [TBL] [Abstract][Full Text] [Related]
18. Comparison between calcium carbonate and β-tricalcium phosphate as additives of 3D printed scaffolds with polylactic acid matrix. Donate R; Monzón M; Ortega Z; Wang L; Ribeiro V; Pestana D; Oliveira JM; Reis RL J Tissue Eng Regen Med; 2020 Feb; 14(2):272-283. PubMed ID: 31733089 [TBL] [Abstract][Full Text] [Related]
19. Ceramic scaffolds produced by computer-assisted 3D printing and sintering: characterization and biocompatibility investigations. Warnke PH; Seitz H; Warnke F; Becker ST; Sivananthan S; Sherry E; Liu Q; Wiltfang J; Douglas T J Biomed Mater Res B Appl Biomater; 2010 Apr; 93(1):212-7. PubMed ID: 20091914 [TBL] [Abstract][Full Text] [Related]
20. Three-dimensional (3D) printed scaffold and material selection for bone repair. Zhang L; Yang G; Johnson BN; Jia X Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]