BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 33291812)

  • 1. Preparation and Characterization of MgO-Modified Rice Straw Biochars.
    Qin X; Luo J; Liu Z; Fu Y
    Molecules; 2020 Dec; 25(23):. PubMed ID: 33291812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of torrefaction on the properties of rice straw high temperature pyrolysis char: Pore structure, aromaticity and gasification activity.
    Chen H; Chen X; Qin Y; Wei J; Liu H
    Bioresour Technol; 2017 Mar; 228():241-249. PubMed ID: 28068592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biochar characteristics produced from rice husks and their sorption properties for the acetanilide herbicide metolachlor.
    Wei L; Huang Y; Li Y; Huang L; Mar NN; Huang Q; Liu Z
    Environ Sci Pollut Res Int; 2017 Feb; 24(5):4552-4561. PubMed ID: 27957688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and 2D structural model of corn straw and poplar leaf biochars.
    Zhao N; Lv Y; Yang X; Huang F; Yang J
    Environ Sci Pollut Res Int; 2018 Sep; 25(26):25789-25798. PubMed ID: 29270898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate.
    Gai X; Wang H; Liu J; Zhai L; Liu S; Ren T; Liu H
    PLoS One; 2014; 9(12):e113888. PubMed ID: 25469875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption Removal of 17β-Estradiol from Water by Rice Straw-Derived Biochar with Special Attention to Pyrolysis Temperature and Background Chemistry.
    Wang X; Liu N; Liu Y; Jiang L; Zeng G; Tan X; Liu S; Yin Z; Tian S; Li J
    Int J Environ Res Public Health; 2017 Oct; 14(10):. PubMed ID: 29019933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance evaluation of crop residue and kitchen waste-derived biochar for eco-efficient removal of arsenic from soils of the Indo-Gangetic plain: A step towards sustainable pollution management.
    Kumar A; Bhattacharya T; Shaikh WA; Roy A; Mukherjee S; Kumar M
    Environ Res; 2021 Sep; 200():111758. PubMed ID: 34303680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Value addition to rice straw through pyrolysis in hydrogen and nitrogen environments.
    Balagurumurthy B; Srivastava V; Vinit ; Kumar J; Biswas B; Singh R; Gupta P; Kumar KL; Singh R; Bhaskar T
    Bioresour Technol; 2015; 188():273-9. PubMed ID: 25637279
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative mechanisms of cadmium adsorption on rice straw- and swine manure-derived biochars.
    Deng Y; Huang S; Laird DA; Wang X; Dong C
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32418-32432. PubMed ID: 30232770
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrolysis temperature influences the characteristics of rice straw and husk biochar and sorption/desorption behaviour of their biourea composite.
    Vendra Singh S; Chaturvedi S; Dhyani VC; Kasivelu G
    Bioresour Technol; 2020 Oct; 314():123674. PubMed ID: 32593785
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars.
    Claoston N; Samsuri AW; Ahmad Husni MH; Mohd Amran MS
    Waste Manag Res; 2014 Apr; 32(4):331-9. PubMed ID: 24643171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorption of tetracycline on biochar derived from rice straw under different temperatures.
    Wang H; Chu Y; Fang C; Huang F; Song Y; Xue X
    PLoS One; 2017; 12(8):e0182776. PubMed ID: 28792530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption behavior of 2,4-DCP by rice straw biochar modified with CTAB.
    Liu W; Ren D; Wu J; Wang Z; Zhang S; Zhang X; Gong X
    Environ Technol; 2021 Oct; 42(24):3797-3806. PubMed ID: 32167412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties.
    Kloss S; Zehetner F; Dellantonio A; Hamid R; Ottner F; Liedtke V; Schwanninger M; Gerzabek MH; Soja G
    J Environ Qual; 2012; 41(4):990-1000. PubMed ID: 22751041
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of exfoliated biochar from four agricultural feedstock.
    Roy S; Kumar U; Bhattacharyya P
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):7272-7276. PubMed ID: 30661167
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products.
    Jeong CY; Dodla SK; Wang JJ
    Chemosphere; 2016 Jan; 142():4-13. PubMed ID: 26058554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery and electrochemical performance in lithium secondary batteries of biochar derived from rice straw.
    Ryu DJ; Oh RG; Seo YD; Oh SY; Ryu KS
    Environ Sci Pollut Res Int; 2015 Jul; 22(14):10405-12. PubMed ID: 25821037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased agronomic and environmental value provided by biochars with varied physiochemical properties derived from swine manure blended with rice straw.
    Dai Z; Brookes PC; He Y; Xu J
    J Agric Food Chem; 2014 Nov; 62(44):10623-31. PubMed ID: 25307928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of pyrolysis temperature and feedstock on carbon fractions of biochar produced from pyrolysis of rice straw, pine wood, pig manure and sewage sludge.
    Wei S; Zhu M; Fan X; Song J; Peng P; Li K; Jia W; Song H
    Chemosphere; 2019 Mar; 218():624-631. PubMed ID: 30502701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slow pyrolysis of rice straw: analysis of products properties, carbon and energy yields.
    Park J; Lee Y; Ryu C; Park YK
    Bioresour Technol; 2014 Mar; 155():63-70. PubMed ID: 24423650
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.