These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Relationship between hot spot residues and ligand binding hot spots in protein-protein interfaces. Zerbe BS; Hall DR; Vajda S; Whitty A; Kozakov D J Chem Inf Model; 2012 Aug; 52(8):2236-44. PubMed ID: 22770357 [TBL] [Abstract][Full Text] [Related]
3. Expanding FTMap for Fragment-Based Identification of Pharmacophore Regions in Ligand Binding Sites. Khan O; Jones G; Lazou M; Joseph-McCarthy D; Kozakov D; Beglov D; Vajda S J Chem Inf Model; 2024 Mar; 64(6):2084-2100. PubMed ID: 38456842 [TBL] [Abstract][Full Text] [Related]
4. Hot spot analysis for driving the development of hits into leads in fragment-based drug discovery. Hall DR; Ngan CH; Zerbe BS; Kozakov D; Vajda S J Chem Inf Model; 2012 Jan; 52(1):199-209. PubMed ID: 22145575 [TBL] [Abstract][Full Text] [Related]
5. FTMAP: extended protein mapping with user-selected probe molecules. Ngan CH; Bohnuud T; Mottarella SE; Beglov D; Villar EA; Hall DR; Kozakov D; Vajda S Nucleic Acids Res; 2012 Jul; 40(Web Server issue):W271-5. PubMed ID: 22589414 [TBL] [Abstract][Full Text] [Related]
6. The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Kozakov D; Grove LE; Hall DR; Bohnuud T; Mottarella SE; Luo L; Xia B; Beglov D; Vajda S Nat Protoc; 2015 May; 10(5):733-55. PubMed ID: 25855957 [TBL] [Abstract][Full Text] [Related]
7. Robust identification of binding hot spots using continuum electrostatics: application to hen egg-white lysozyme. Hall DH; Grove LE; Yueh C; Ngan CH; Kozakov D; Vajda S J Am Chem Soc; 2011 Dec; 133(51):20668-71. PubMed ID: 22092261 [TBL] [Abstract][Full Text] [Related]
8. Detection of ligand binding hot spots on protein surfaces via fragment-based methods: application to DJ-1 and glucocerebrosidase. Landon MR; Lieberman RL; Hoang QQ; Ju S; Caaveiro JM; Orwig SD; Kozakov D; Brenke R; Chuang GY; Beglov D; Vajda S; Petsko GA; Ringe D J Comput Aided Mol Des; 2009 Aug; 23(8):491-500. PubMed ID: 19521672 [TBL] [Abstract][Full Text] [Related]
9. Ligand deconstruction: Why some fragment binding positions are conserved and others are not. Kozakov D; Hall DR; Jehle S; Luo L; Ochiana SO; Jones EV; Pollastri M; Allen KN; Whitty A; Vajda S Proc Natl Acad Sci U S A; 2015 May; 112(20):E2585-94. PubMed ID: 25918377 [TBL] [Abstract][Full Text] [Related]
10. Exploring the structural origins of cryptic sites on proteins. Beglov D; Hall DR; Wakefield AE; Luo L; Allen KN; Kozakov D; Whitty A; Vajda S Proc Natl Acad Sci U S A; 2018 Apr; 115(15):E3416-E3425. PubMed ID: 29581267 [TBL] [Abstract][Full Text] [Related]
11. Lessons from Hot Spot Analysis for Fragment-Based Drug Discovery. Hall DR; Kozakov D; Whitty A; Vajda S Trends Pharmacol Sci; 2015 Nov; 36(11):724-736. PubMed ID: 26538314 [TBL] [Abstract][Full Text] [Related]
12. Hot spots in protein-protein interfaces: towards drug discovery. Cukuroglu E; Engin HB; Gursoy A; Keskin O Prog Biophys Mol Biol; 2014; 116(2-3):165-73. PubMed ID: 24997383 [TBL] [Abstract][Full Text] [Related]
13. Conformation-dependent ligand hot spots in the spliceosomal RNA helicase BRR2. Vester K; Metz A; Huber S; Loll B; Wahl MC Acta Crystallogr D Struct Biol; 2023 Apr; 79(Pt 4):304-317. PubMed ID: 36974964 [TBL] [Abstract][Full Text] [Related]
14. Surface plasmon resonance biosensor based fragment screening using acetylcholine binding protein identifies ligand efficiency hot spots (LE hot spots) by deconstruction of nicotinic acetylcholine receptor α7 ligands. de Kloe GE; Retra K; Geitmann M; Källblad P; Nahar T; van Elk R; Smit AB; van Muijlwijk-Koezen JE; Leurs R; Irth H; Danielson UH; de Esch IJ J Med Chem; 2010 Oct; 53(19):7192-201. PubMed ID: 20828128 [TBL] [Abstract][Full Text] [Related]
15. Fragment-based identification of druggable 'hot spots' of proteins using Fourier domain correlation techniques. Brenke R; Kozakov D; Chuang GY; Beglov D; Hall D; Landon MR; Mattos C; Vajda S Bioinformatics; 2009 Mar; 25(5):621-7. PubMed ID: 19176554 [TBL] [Abstract][Full Text] [Related]
16. Mapping the binding sites of challenging drug targets. Wakefield AE; Kozakov D; Vajda S Curr Opin Struct Biol; 2022 Aug; 75():102396. PubMed ID: 35636004 [TBL] [Abstract][Full Text] [Related]
17. Simulated unbound structures for benchmarking of protein docking in the DOCKGROUND resource. Kirys T; Ruvinsky AM; Singla D; Tuzikov AV; Kundrotas PJ; Vakser IA BMC Bioinformatics; 2015 Jul; 16(1):243. PubMed ID: 26227548 [TBL] [Abstract][Full Text] [Related]
18. Cross-docking benchmark for automated pose and ranking prediction of ligand binding. Wierbowski SD; Wingert BM; Zheng J; Camacho CJ Protein Sci; 2020 Jan; 29(1):298-305. PubMed ID: 31721338 [TBL] [Abstract][Full Text] [Related]
19. FTFlex: accounting for binding site flexibility to improve fragment-based identification of druggable hot spots. Grove LE; Hall DR; Beglov D; Vajda S; Kozakov D Bioinformatics; 2013 May; 29(9):1218-9. PubMed ID: 23476022 [TBL] [Abstract][Full Text] [Related]
20. Benchmark data sets for structure-based computational target prediction. Schomburg KT; Rarey M J Chem Inf Model; 2014 Aug; 54(8):2261-74. PubMed ID: 25084060 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]