These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
688 related articles for article (PubMed ID: 33292085)
21. Cysteine focused covalent inhibitors against the main protease of SARS-CoV-2. Paul AS; Islam R; Parves MR; Mamun AA; Shahriar I; Hossain MI; Hossain MN; Ali MA; Halim MA J Biomol Struct Dyn; 2022 Mar; 40(4):1639-1658. PubMed ID: 33047658 [TBL] [Abstract][Full Text] [Related]
22. Sterenin M as a potential inhibitor of SARS-CoV-2 main protease identified from MeFSAT database using molecular docking, molecular dynamics simulation and binding free energy calculation. Prajapati J; Patel R; Goswami D; Saraf M; Rawal RM Comput Biol Med; 2021 Aug; 135():104568. PubMed ID: 34174757 [TBL] [Abstract][Full Text] [Related]
23. In silico evaluation of Philippine Natural Products against SARS-CoV-2 Main Protease. Cheng AJT; Macalino SJY; Billones JB; Balolong MP; Murao LAE; Carrillo MCO J Mol Model; 2022 Oct; 28(11):345. PubMed ID: 36205801 [TBL] [Abstract][Full Text] [Related]
24. Structure-based screening of novel lichen compounds against SARS Coronavirus main protease (Mpro) as potentials inhibitors of COVID-19. Joshi T; Sharma P; Joshi T; Pundir H; Mathpal S; Chandra S Mol Divers; 2021 Aug; 25(3):1665-1677. PubMed ID: 32602074 [TBL] [Abstract][Full Text] [Related]
25. Natural Polyphenols Inhibit the Dimerization of the SARS-CoV-2 Main Protease: The Case of Fortunellin and Its Structural Analogs. Panagiotopoulos AA; Karakasiliotis I; Kotzampasi DM; Dimitriou M; Sourvinos G; Kampa M; Pirintsos S; Castanas E; Daskalakis V Molecules; 2021 Oct; 26(19):. PubMed ID: 34641612 [TBL] [Abstract][Full Text] [Related]
26. Conserved interactions required for inhibition of the main protease of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Shitrit A; Zaidman D; Kalid O; Bloch I; Doron D; Yarnizky T; Buch I; Segev I; Ben-Zeev E; Segev E; Kobiler O Sci Rep; 2020 Nov; 10(1):20808. PubMed ID: 33257760 [TBL] [Abstract][Full Text] [Related]
27. Identification of Main Protease of Coronavirus SARS-CoV-2 (M Elekofehinti OO; Iwaloye O; Famusiwa CD; Akinseye O; Rocha JBT Curr Drug Discov Technol; 2021; 18(5):e17092020186048. PubMed ID: 32957889 [TBL] [Abstract][Full Text] [Related]
28. Glycyrrhizic acid conjugates with amino acid methyl esters target the main protease, exhibiting antiviral activity against wild-type and nirmatrelvir-resistant SARS-CoV-2 variants. Le UNP; Chang YJ; Lu CH; Chen Y; Su WC; Chao ST; Baltina LA; Petrova SF; Li SR; Hung MC; Lai MMC; Baltina LA; Lin CW Antiviral Res; 2024 Jul; 227():105920. PubMed ID: 38821317 [TBL] [Abstract][Full Text] [Related]
29. Covalent small-molecule inhibitors of SARS-CoV-2 Mpro: Insights into their design, classification, biological activity, and binding interactions. Shawky AM; Almalki FA; Alzahrani HA; Abdalla AN; Youssif BGM; Ibrahim NA; Gamal M; El-Sherief HAM; Abdel-Fattah MM; Hefny AA; Abdelazeem AH; Gouda AM Eur J Med Chem; 2024 Nov; 277():116704. PubMed ID: 39121741 [TBL] [Abstract][Full Text] [Related]
30. Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors. Bhardwaj VK; Singh R; Sharma J; Rajendran V; Purohit R; Kumar S J Biomol Struct Dyn; 2021 Jul; 39(10):3449-3458. PubMed ID: 32397940 [TBL] [Abstract][Full Text] [Related]
31. Novel cyclohexanone compound as a potential ligand against SARS-CoV-2 main-protease. Basu S; Veeraraghavan B; Ramaiah S; Anbarasu A Microb Pathog; 2020 Dec; 149():104546. PubMed ID: 33011363 [TBL] [Abstract][Full Text] [Related]
32. Understanding the binding mechanism for potential inhibition of SARS-CoV-2 Mpro and exploring the modes of ACE2 inhibition by hydroxychloroquine. Choudhury M; Dhanabalan AK; Goswami N J Cell Biochem; 2022 Feb; 123(2):347-358. PubMed ID: 34741481 [TBL] [Abstract][Full Text] [Related]
33. Taming the storm: potential anti-inflammatory compounds targeting SARS-CoV-2 MPro. Anton DB; de Lima JC; Dahmer BR; Camini AM; Goettert MI; Timmers LFSM Inflammopharmacology; 2024 Oct; 32(5):3007-3035. PubMed ID: 39048773 [TBL] [Abstract][Full Text] [Related]
34. Investigating the antiviral therapeutic potentialities of marine polycyclic lamellarin pyrrole alkaloids as promising inhibitors for SARS-CoV-2 and Zika main proteases (Mpro). Pereira F; Bedda L; Tammam MA; Alabdullah AK; Arafa R; El-Demerdash A J Biomol Struct Dyn; 2024 May; 42(8):3983-4001. PubMed ID: 37232419 [TBL] [Abstract][Full Text] [Related]
35. Discovery of a "Cocktail" of Potential SARS-COV-2 Main Protease Inhibitors through Virtual Screening of Known Chemical Components of Vitex negundo L. ("Lagundi"). Cayona R; Creencia E Med Chem; 2022; 18(3):364-381. PubMed ID: 34148541 [TBL] [Abstract][Full Text] [Related]
36. Hunting the main protease of SARS-CoV-2 by plitidepsin: Molecular docking and temperature-dependent molecular dynamics simulations. Vishvakarma VK; Singh MB; Jain P; Kumari K; Singh P Amino Acids; 2022 Feb; 54(2):205-213. PubMed ID: 34807314 [TBL] [Abstract][Full Text] [Related]
37. In Silico Comparative Analysis of Ivermectin and Nirmatrelvir Inhibitors Interacting with the SARS-CoV-2 Main Protease. de Oliveira Só YA; Bezerra KS; Gargano R; Mendonça FLL; Souto JT; Fulco UL; Pereira Junior ML; Junior LAR Biomolecules; 2024 Jun; 14(7):. PubMed ID: 39062468 [TBL] [Abstract][Full Text] [Related]
38. Exploring the Therapeutic Potential of Ali MA; Sheikh H; Yaseen M; Faruqe MO; Ullah I; Kumar N; Bhat MA; Mollah MNH Molecules; 2024 May; 29(11):. PubMed ID: 38893400 [TBL] [Abstract][Full Text] [Related]
39. Repurposing of FDA-approved drugs as potential inhibitors of the SARS-CoV-2 main protease: Molecular insights into improved therapeutic discovery. Ray AK; Sen Gupta PS; Panda SK; Biswal S; Bhattacharya U; Rana MK Comput Biol Med; 2022 Mar; 142():105183. PubMed ID: 34986429 [TBL] [Abstract][Full Text] [Related]