BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 33292411)

  • 21. Production of the versatile cellulase for cellulose bioconversion and cellulase inducer synthesis by genetic improvement of
    Gao J; Qian Y; Wang Y; Qu Y; Zhong Y
    Biotechnol Biofuels; 2017; 10():272. PubMed ID: 29167702
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Morphologically favorable mutant of Trichoderma reesei for low viscosity cellulase production.
    Adsul MG; Dixit P; Saini JK; Gupta RP; Ramakumar SSV; Mathur AS
    Biotechnol Bioeng; 2022 Aug; 119(8):2167-2181. PubMed ID: 35470437
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated Barley straw substrates.
    Rosgaard L; Pedersen S; Langston J; Akerhielm D; Cherry JR; Meyer AS
    Biotechnol Prog; 2007; 23(6):1270-6. PubMed ID: 18062669
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials.
    Fujii T; Fang X; Inoue H; Murakami K; Sawayama S
    Biotechnol Biofuels; 2009 Oct; 2(1):24. PubMed ID: 19796378
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simultaneous enhancement of the beta-exo synergism and exo-exo synergism in Trichoderma reesei cellulase to increase the cellulose degrading capability.
    Fang H; Zhao R; Li C; Zhao C
    Microb Cell Fact; 2019 Jan; 18(1):9. PubMed ID: 30657063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Untreated wheat straw: potential source for diverse cellulolytic enzyme secretion by Penicillium janthinellum EMS-UV-8 mutant.
    Sharma B; Agrawal R; Singhania RR; Satlewal A; Mathur A; Tuli D; Adsul M
    Bioresour Technol; 2015 Nov; 196():518-24. PubMed ID: 26291411
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative Secretomics Analysis Reveals the Major Components of
    Wang K; Zhang N; Pearce R; Yi S; Zhao X
    Microorganisms; 2021 Sep; 9(10):. PubMed ID: 34683363
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rational engineering of the
    Fonseca LM; Parreiras LS; Murakami MT
    Biotechnol Biofuels; 2020; 13():93. PubMed ID: 32461765
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression of three Trichoderma reesei cellulase genes in Saccharomyces pastorianus for the development of a two-step process of hydrolysis and fermentation of cellulose.
    Fitzpatrick J; Kricka W; James TC; Bond U
    J Appl Microbiol; 2014 Jul; 117(1):96-108. PubMed ID: 24666670
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains.
    Herpoël-Gimbert I; Margeot A; Dolla A; Jan G; Mollé D; Lignon S; Mathis H; Sigoillot JC; Monot F; Asther M
    Biotechnol Biofuels; 2008 Dec; 1(1):18. PubMed ID: 19105830
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Production of rice straw hydrolysis enzymes by the fungi Trichoderma reesei and Humicola insolens using rice straw as a carbon source.
    Kogo T; Yoshida Y; Koganei K; Matsumoto H; Watanabe T; Ogihara J; Kasumi T
    Bioresour Technol; 2017 Jun; 233():67-73. PubMed ID: 28258998
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cellulase production of Trichoderma reesei Rut C 30 using steam-pretreated spruce. Hydrolytic potential of cellulases on different substrates.
    Szengyel Z; Zacchi G; Varga A; Réczey K
    Appl Biochem Biotechnol; 2000; 84-86():679-91. PubMed ID: 10849827
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a powerful synthetic hybrid promoter to improve the cellulase system of Trichoderma reesei for efficient saccharification of corncob residues.
    Wang Y; Liu R; Liu H; Li X; Shen L; Zhang W; Song X; Liu W; Liu X; Zhong Y
    Microb Cell Fact; 2022 Jan; 21(1):5. PubMed ID: 34983541
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of pH on cellulase production of Trichoderma reesei RUT C30.
    Juhász T; Szengyel Z; Szijártó N; Réczey K
    Appl Biochem Biotechnol; 2004; 113-116():201-11. PubMed ID: 15054207
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glucose-lactose mixture feeds in industry-like conditions: a gene regulatory network analysis on the hyperproducing Trichoderma reesei strain Rut-C30.
    Pirayre A; Duval L; Blugeon C; Firmo C; Perrin S; Jourdier E; Margeot A; Bidard F
    BMC Genomics; 2020 Dec; 21(1):885. PubMed ID: 33302864
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mn
    Chen Y; Shen Y; Wang W; Wei D
    Biotechnol Biofuels; 2018; 11():54. PubMed ID: 29507606
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Profiling of the β-glucosidases identified in the genome of
    Okereke OE; Gupta M; Ogunyewo OA; Sharma K; Kapoor S; Sinha T; Yazdani SS
    Appl Environ Microbiol; 2023 Sep; 89(9):e0070423. PubMed ID: 37610233
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Production of highly efficient cellulase mixtures by genetically exploiting the potentials of Trichoderma reesei endogenous cellulases for hydrolysis of corncob residues.
    Qian Y; Zhong L; Gao J; Sun N; Wang Y; Sun G; Qu Y; Zhong Y
    Microb Cell Fact; 2017 Nov; 16(1):207. PubMed ID: 29162107
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deletion of homologs of the SREBP pathway results in hyper-production of cellulases in Neurospora crassa and Trichoderma reesei.
    Reilly MC; Qin L; Craig JP; Starr TL; Glass NL
    Biotechnol Biofuels; 2015; 8():121. PubMed ID: 26288653
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization and Strain Improvement of a Hypercellulytic Variant, Trichoderma reesei SN1, by Genetic Engineering for Optimized Cellulase Production in Biomass Conversion Improvement.
    Qian Y; Zhong L; Hou Y; Qu Y; Zhong Y
    Front Microbiol; 2016; 7():1349. PubMed ID: 27621727
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.