BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33292570)

  • 21. Pharmacovigilance strategy: opportunities for cross-national learning.
    Fermont I
    Isr J Health Policy Res; 2019 Jun; 8(1):54. PubMed ID: 31217025
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Portable automatic text classification for adverse drug reaction detection via multi-corpus training.
    Sarker A; Gonzalez G
    J Biomed Inform; 2015 Feb; 53():196-207. PubMed ID: 25451103
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Concurrence of big data analytics and healthcare: A systematic review.
    Mehta N; Pandit A
    Int J Med Inform; 2018 Jun; 114():57-65. PubMed ID: 29673604
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Harnessing the Power of Large Language Models (LLMs) for Electronic Health Records (EHRs) Optimization.
    Nashwan AJ; AbuJaber AA
    Cureus; 2023 Jul; 15(7):e42634. PubMed ID: 37644945
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Natural language processing in clinical neuroscience and psychiatry: A review.
    Crema C; Attardi G; Sartiano D; Redolfi A
    Front Psychiatry; 2022; 13():946387. PubMed ID: 36186874
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Artificial Intelligence in Medical Practice: The Question to the Answer?
    Miller DD; Brown EW
    Am J Med; 2018 Feb; 131(2):129-133. PubMed ID: 29126825
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Promises of Big Data and Artificial Intelligence in Nephrology and Transplantation.
    Thongprayoon C; Kaewput W; Kovvuru K; Hansrivijit P; Kanduri SR; Bathini T; Chewcharat A; Leeaphorn N; Gonzalez-Suarez ML; Cheungpasitporn W
    J Clin Med; 2020 Apr; 9(4):. PubMed ID: 32294906
    [TBL] [Abstract][Full Text] [Related]  

  • 28. How can artificial intelligence optimize value-based contracting?
    Poveda JL; Bretón-Romero R; Del Rio-Bermudez C; Taberna M; Medrano IH
    J Pharm Policy Pract; 2022 Nov; 15(1):85. PubMed ID: 36401303
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Application of Artificial Intelligence Methods to Pharmacy Data for Cancer Surveillance and Epidemiology Research: A Systematic Review.
    Grothen AE; Tennant B; Wang C; Torres A; Bloodgood Sheppard B; Abastillas G; Matatova M; Warner JL; Rivera DR
    JCO Clin Cancer Inform; 2020 Nov; 4():1051-1058. PubMed ID: 33197205
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Population-Based Applications and Analytics Using Patient-Reported Outcome Measures.
    MacLean CH; Antao VC; Chin AS; McLawhorn AS
    J Am Acad Orthop Surg; 2023 Oct; 31(20):1078-1087. PubMed ID: 37276464
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach.
    Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK
    Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CardioNet: a manually curated database for artificial intelligence-based research on cardiovascular diseases.
    Ahn I; Na W; Kwon O; Yang DH; Park GM; Gwon H; Kang HJ; Jeong YU; Yoo J; Kim Y; Jun TJ; Kim YH
    BMC Med Inform Decis Mak; 2021 Jan; 21(1):29. PubMed ID: 33509180
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Risk prediction using natural language processing of electronic mental health records in an inpatient forensic psychiatry setting.
    Le DV; Montgomery J; Kirkby KC; Scanlan J
    J Biomed Inform; 2018 Oct; 86():49-58. PubMed ID: 30118855
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Social and Behavioral Determinants of Health in the Era of Artificial Intelligence with Electronic Health Records: A Scoping Review.
    Bompelli A; Wang Y; Wan R; Singh E; Zhou Y; Xu L; Oniani D; Kshatriya BSA; Balls-Berry JJE; Zhang R
    Health Data Sci; 2021; 2021():9759016. PubMed ID: 38487504
    [No Abstract]   [Full Text] [Related]  

  • 35. Artificial intelligence in healthcare: An essential guide for health leaders.
    Chen M; Decary M
    Healthc Manage Forum; 2020 Jan; 33(1):10-18. PubMed ID: 31550922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Artificial intelligence framework for simulating clinical decision-making: a Markov decision process approach.
    Bennett CC; Hauser K
    Artif Intell Med; 2013 Jan; 57(1):9-19. PubMed ID: 23287490
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Considerations for the Use of Machine Learning Extracted Real-World Data to Support Evidence Generation: A Research-Centric Evaluation Framework.
    Estevez M; Benedum CM; Jiang C; Cohen AB; Phadke S; Sarkar S; Bozkurt S
    Cancers (Basel); 2022 Jun; 14(13):. PubMed ID: 35804834
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The rise of artificial intelligence and the uncertain future for physicians.
    Krittanawong C
    Eur J Intern Med; 2018 Feb; 48():e13-e14. PubMed ID: 28651747
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Learning signals of adverse drug-drug interactions from the unstructured text of electronic health records.
    Iyer SV; Lependu P; Harpaz R; Bauer-Mehren A; Shah NH
    AMIA Jt Summits Transl Sci Proc; 2013; 2013():83-7. PubMed ID: 24303305
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Learning signals of adverse drug-drug interactions from the unstructured text of electronic health records.
    Iyer SV; Lependu P; Harpaz R; Bauer-Mehren A; Shah NH
    AMIA Jt Summits Transl Sci Proc; 2013; 2013():98. PubMed ID: 24303244
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.