BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33292570)

  • 41. Clinical Text Data in Machine Learning: Systematic Review.
    Spasic I; Nenadic G
    JMIR Med Inform; 2020 Mar; 8(3):e17984. PubMed ID: 32229465
    [TBL] [Abstract][Full Text] [Related]  

  • 42. From subconscious to conscious to artificial intelligence: A focus on electronic health records.
    Bhavaraju SR
    Neurol India; 2018; 66(5):1270-1275. PubMed ID: 30232983
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Machine learning and big data: Implications for disease modeling and therapeutic discovery in psychiatry.
    Tai AMY; Albuquerque A; Carmona NE; Subramanieapillai M; Cha DS; Sheko M; Lee Y; Mansur R; McIntyre RS
    Artif Intell Med; 2019 Aug; 99():101704. PubMed ID: 31606109
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cognitive IT-systems for big data analysis in medicine.
    Isakova J
    Int J Risk Saf Med; 2015; 27 Suppl 1():S108-9. PubMed ID: 26639685
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Artificial intelligence and modern information and communication technologies entering medicine.
    Brdička R
    Cas Lek Cesk; 2019; 158(2):87-91. PubMed ID: 31109170
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The application of adverse drug reaction data to drug choice decisions made by pharmacy and therapeutics committees. An Australian perspective.
    Weekes LM; Day RO
    Drug Saf; 1998 Mar; 18(3):153-9. PubMed ID: 9530535
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Best Practices on Big Data Analytics to Address Sex-Specific Biases in Our Understanding of the Etiology, Diagnosis, and Prognosis of Diseases.
    Golder S; O'Connor K; Wang Y; Stevens R; Gonzalez-Hernandez G
    Annu Rev Biomed Data Sci; 2022 Aug; 5():251-267. PubMed ID: 35562851
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A disruptive Big data approach to leverage the efficiency in management and clinical decision support in a Hospital.
    Almeida JP
    Porto Biomed J; 2016; 1(1):40-42. PubMed ID: 32258546
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Acronym Disambiguation in Spanish Electronic Health Narratives Using Machine Learning Techniques.
    Rubio-López I; Costumero R; Ambit H; Gonzalo-Martín C; Menasalvas E; Rodríguez González A
    Stud Health Technol Inform; 2017; 235():251-255. PubMed ID: 28423792
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Extraction of Information Related to Drug Safety Surveillance From Electronic Health Record Notes: Joint Modeling of Entities and Relations Using Knowledge-Aware Neural Attentive Models.
    Dandala B; Joopudi V; Tsou CH; Liang JJ; Suryanarayanan P
    JMIR Med Inform; 2020 Jul; 8(7):e18417. PubMed ID: 32459650
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transforming healthcare with big data analytics and artificial intelligence: A systematic mapping study.
    Mehta N; Pandit A; Shukla S
    J Biomed Inform; 2019 Dec; 100():103311. PubMed ID: 31629922
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review.
    Koleck TA; Dreisbach C; Bourne PE; Bakken S
    J Am Med Inform Assoc; 2019 Apr; 26(4):364-379. PubMed ID: 30726935
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Using Machine Learning and Natural Language Processing Algorithms to Automate the Evaluation of Clinical Decision Support in Electronic Medical Record Systems.
    Szlosek DA; Ferrett J
    EGEMS (Wash DC); 2016; 4(3):1222. PubMed ID: 27683664
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Real-world data mining meets clinical practice: Research challenges and perspective.
    Mandreoli F; Ferrari D; Guidetti V; Motta F; Missier P
    Front Big Data; 2022; 5():1021621. PubMed ID: 36338334
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Improving Adherence to Clinical Pathways Through Natural Language Processing on Electronic Medical Records.
    Cruz NP; Canales L; Muñoz JG; Pérez B; Arnott I
    Stud Health Technol Inform; 2019 Aug; 264():561-565. PubMed ID: 31437986
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pharmacoepidemiology and Big Data Analytics: Challenges and Opportunities when Moving towards Precision Medicine.
    Burden AM
    Chimia (Aarau); 2019 Dec; 73(12):1012-1017. PubMed ID: 31883553
    [TBL] [Abstract][Full Text] [Related]  

  • 57. From narrative descriptions to MedDRA: automagically encoding adverse drug reactions.
    Combi C; Zorzi M; Pozzani G; Moretti U; Arzenton E
    J Biomed Inform; 2018 Aug; 84():184-199. PubMed ID: 29981491
    [TBL] [Abstract][Full Text] [Related]  

  • 58. From Big Data to Smart Data for Pharmacovigilance: The Role of Healthcare Databases and Other Emerging Sources.
    Trifirò G; Sultana J; Bate A
    Drug Saf; 2018 Feb; 41(2):143-149. PubMed ID: 28840504
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features.
    Nikfarjam A; Sarker A; O'Connor K; Ginn R; Gonzalez G
    J Am Med Inform Assoc; 2015 May; 22(3):671-81. PubMed ID: 25755127
    [TBL] [Abstract][Full Text] [Related]  

  • 60. ASHP national survey of pharmacy practice in hospital settings: Prescribing and transcribing-2013.
    Pedersen CA; Schneider PJ; Scheckelhoff DJ
    Am J Health Syst Pharm; 2014 Jun; 71(11):924-42. PubMed ID: 24830997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.