These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33292570)

  • 61. Development and evaluation of RapTAT: a machine learning system for concept mapping of phrases from medical narratives.
    Gobbel GT; Reeves R; Jayaramaraja S; Giuse D; Speroff T; Brown SH; Elkin PL; Matheny ME
    J Biomed Inform; 2014 Apr; 48():54-65. PubMed ID: 24316051
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Machine learning to support social media empowered patients in cancer care and cancer treatment decisions.
    De Silva D; Ranasinghe W; Bandaragoda T; Adikari A; Mills N; Iddamalgoda L; Alahakoon D; Lawrentschuk N; Persad R; Osipov E; Gray R; Bolton D
    PLoS One; 2018; 13(10):e0205855. PubMed ID: 30335805
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Essential Elements of Natural Language Processing: What the Radiologist Should Know.
    Chen PH
    Acad Radiol; 2020 Jan; 27(1):6-12. PubMed ID: 31537505
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Desiderata for delivering NLP to accelerate healthcare AI advancement and a Mayo Clinic NLP-as-a-service implementation.
    Wen A; Fu S; Moon S; El Wazir M; Rosenbaum A; Kaggal VC; Liu S; Sohn S; Liu H; Fan J
    NPJ Digit Med; 2019; 2():130. PubMed ID: 31872069
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Using predictive analytics and big data to optimize pharmaceutical outcomes.
    Hernandez I; Zhang Y
    Am J Health Syst Pharm; 2017 Sep; 74(18):1494-1500. PubMed ID: 28887351
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Redefining biomaterial biocompatibility: challenges for artificial intelligence and text mining.
    Mateu-Sanz M; Fuenteslópez CV; Uribe-Gomez J; Haugen HJ; Pandit A; Ginebra MP; Hakimi O; Krallinger M; Samara A
    Trends Biotechnol; 2024 Apr; 42(4):402-417. PubMed ID: 37858386
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Artificial intelligence: A joint narrative on potential use in pediatric stem and immune cell therapies and regenerative medicine.
    Sniecinski I; Seghatchian J
    Transfus Apher Sci; 2018 Jun; 57(3):422-424. PubMed ID: 29784537
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Physician and Pharmacist Medication Decision-Making in the Time of Electronic Health Records: Mixed-Methods Study.
    Mercer K; Burns C; Guirguis L; Chin J; Dogba MJ; Dolovich L; Guénette L; Jenkins L; Légaré F; McKinnon A; McMurray J; Waked K; Grindrod KA
    JMIR Hum Factors; 2018 Sep; 5(3):e24. PubMed ID: 30274959
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [A customized method for information extraction from unstructured text data in the electronic medical records].
    Bao XY; Huang WJ; Zhang K; Jin M; Li Y; Niu CZ
    Beijing Da Xue Xue Bao Yi Xue Ban; 2018 Apr; 50(2):256-263. PubMed ID: 29643524
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Prescription and over-the-counter medication record integration: A holistic patient-centered approach.
    Kebodeaux CD
    J Am Pharm Assoc (2003); 2019; 59(2S):S13-S17. PubMed ID: 30448026
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Novel opportunities for clinical pharmacy research: development of a machine learning model to identify medication related causes of delirium in different patient groups.
    Weidmann AE; Watson EW
    Int J Clin Pharm; 2024 Apr; ():. PubMed ID: 38594470
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Application of big data in ophthalmology.
    Soh ZD; Cheng CY
    Taiwan J Ophthalmol; 2023; 13(2):123-132. PubMed ID: 37484625
    [TBL] [Abstract][Full Text] [Related]  

  • 73. AI and Big Data in Healthcare: Towards a More Comprehensive Research Framework for Multimorbidity.
    Majnarić LT; Babič F; O'Sullivan S; Holzinger A
    J Clin Med; 2021 Feb; 10(4):. PubMed ID: 33672914
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Deep learning and alternative learning strategies for retrospective real-world clinical data.
    Chen D; Liu S; Kingsbury P; Sohn S; Storlie CB; Habermann EB; Naessens JM; Larson DW; Liu H
    NPJ Digit Med; 2019; 2():43. PubMed ID: 31304389
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Application of an NLP AI Tool in Psoriasis: A Cross-Sectional Comparative Study on Identifying Affected Areas in Patients' Data.
    Shapiro J; Baum S; Pavlotzky F; Mordechai YB; Barzilai A; Freud T; Gershon R
    Clin Dermatol; 2024 Jun; ():. PubMed ID: 38909857
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Predictive Analytics in Spine Oncology Research: First Steps, Limitations, and Future Directions.
    Massaad E; Fatima N; Hadzipasic M; Alvarez-Breckenridge C; Shankar GM; Shin JH
    Neurospine; 2019 Dec; 16(4):669-677. PubMed ID: 31905455
    [TBL] [Abstract][Full Text] [Related]  

  • 77. "Right-to-Try" experimental drugs: an overview.
    Mahant V
    J Transl Med; 2020 Jun; 18(1):253. PubMed ID: 32576276
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Big Data in Laboratory Medicine-FAIR Quality for AI?
    Blatter TU; Witte H; Nakas CT; Leichtle AB
    Diagnostics (Basel); 2022 Aug; 12(8):. PubMed ID: 36010273
    [TBL] [Abstract][Full Text] [Related]  

  • 79. An explainable artificial intelligence approach for predicting cardiovascular outcomes using electronic health records.
    Wesołowski S; Lemmon G; Hernandez EJ; Henrie A; Miller TA; Weyhrauch D; Puchalski MD; Bray BE; Shah RU; Deshmukh VG; Delaney R; Yost HJ; Eilbeck K; Tristani-Firouzi M; Yandell M
    PLOS Digit Health; 2022; 1(1):. PubMed ID: 35373216
    [TBL] [Abstract][Full Text] [Related]  

  • 80. The principles of whole-hospital predictive analytics monitoring for clinical medicine originated in the neonatal ICU.
    Randall Moorman J
    NPJ Digit Med; 2022 Mar; 5(1):41. PubMed ID: 35361861
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.