These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33292721)

  • 21. Papiliochrome II pigment reduces the angle dependency of structural wing colouration in nireus group papilionids.
    Wilts BD; Trzeciak TM; Vukusic P; Stavenga DG
    J Exp Biol; 2012 Mar; 215(Pt 5):796-805. PubMed ID: 22323202
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photonic Crystal Structure and Coloration of Wing Scales of Butterflies Exhibiting Selective Wavelength Iridescence.
    Mika F; Matějková-Plšková J; Jiwajinda S; Dechkrong P; Shiojiri M
    Materials (Basel); 2012 Apr; 5(5):754-771. PubMed ID: 28817007
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultrastructural variation tune wing coloration of a moth Asota caricae Fabricius, 1775.
    Mishra M; Nayak N; Sahoo H
    Tissue Cell; 2017 Dec; 49(6):648-656. PubMed ID: 28935358
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Spectral reflectance properties of iridescent pierid butterfly wings.
    Wilts BD; Pirih P; Stavenga DG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Jun; 197(6):693-702. PubMed ID: 21344203
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatial reflection patterns of iridescent wings of male pierid butterflies: curved scales reflect at a wider angle than flat scales.
    Pirih P; Wilts BD; Stavenga DG
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Oct; 197(10):987-97. PubMed ID: 21744009
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The lesser purple emperor butterfly,
    Schenk F; Stavenga DG
    Faraday Discuss; 2020 Oct; 223(0):145-160. PubMed ID: 32760964
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pterin pigments amplify iridescent ultraviolet signal in males of the orange sulphur butterfly, Colias eurytheme.
    Rutowski RL; Macedonia JM; Morehouse N; Taylor-Taft L
    Proc Biol Sci; 2005 Nov; 272(1578):2329-35. PubMed ID: 16191648
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of color shift on butterfly wings by Fourier transform of images from atomic force microscopy.
    Kaspar P; Sobola D; Sedlák P; Holcman V; Grmela L
    Microsc Res Tech; 2019 Dec; 82(12):2007-2013. PubMed ID: 31441987
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Condition dependence, quantitative genetics, and the potential signal content of iridescent ultraviolet butterfly coloration.
    Kemp DJ; Rutowski RL
    Evolution; 2007 Jan; 61(1):168-83. PubMed ID: 17300436
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Single master regulatory gene coordinates the evolution and development of butterfly color and iridescence.
    Zhang L; Mazo-Vargas A; Reed RD
    Proc Natl Acad Sci U S A; 2017 Oct; 114(40):10707-10712. PubMed ID: 28923944
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thin-film structural coloration from simple fused scales in moths.
    Kilchoer C; Steiner U; Wilts BD
    Interface Focus; 2019 Feb; 9(1):20180044. PubMed ID: 30603066
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bogong Moths Are Well Camouflaged by Effectively Decolourized Wing Scales.
    Stavenga DG; Wallace JRA; Warrant EJ
    Front Physiol; 2020; 11():95. PubMed ID: 32116798
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Colour formation on the wings of the butterfly Hypolimnas salmacis by scale stacking.
    Siddique RH; Vignolini S; Bartels C; Wacker I; Hölscher H
    Sci Rep; 2016 Nov; 6():36204. PubMed ID: 27805005
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Imaging scatterometry of butterfly wing scales.
    Stavenga DG; Leertouwer HL; Pirih P; Wehling MF
    Opt Express; 2009 Jan; 17(1):193-202. PubMed ID: 19129888
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pigmentary and photonic coloration mechanisms reveal taxonomic relationships of the Cattlehearts (Lepidoptera: Papilionidae: Parides).
    Wilts BD; IJbema N; Stavenga DG
    BMC Evol Biol; 2014 Jul; 14():160. PubMed ID: 25064167
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Dynamic Optical Signal in a Nocturnal Moth.
    Kelley JL; Tatarnic NJ; Schröder-Turk GE; Endler JA; Wilts BD
    Curr Biol; 2019 Sep; 29(17):2919-2925.e2. PubMed ID: 31402306
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of a butterfly scale microstructure on the iridescent color observed at different angles.
    Tada H; Mann S; Miaoulis I; Wong P
    Opt Express; 1999 Aug; 5(4):87-92. PubMed ID: 19399050
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of a butterfly scale microstructure on the iridescent color observed at different angles.
    Tada H; Mann SE; Miaoulis IN; Wong PY
    Appl Opt; 1998 Mar; 37(9):1579-84. PubMed ID: 18268750
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wing scale ultrastructure underlying convergent and divergent iridescent colours in mimetic
    Parnell AJ; Bradford JE; Curran EV; Washington AL; Adams G; Brien MN; Burg SL; Morochz C; Fairclough JPA; Vukusic P; Martin SJ; Doak S; Nadeau NJ
    J R Soc Interface; 2018 Apr; 15(141):. PubMed ID: 29669892
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measuring and modelling optical scattering and the colour quality of white pierid butterfly scales.
    Luke SM; Vukusic P; Hallam B
    Opt Express; 2009 Aug; 17(17):14729-43. PubMed ID: 19687951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.