These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 33292949)
1. Modulatory effect of Cyclocarya paliurus flavonoids on the intestinal microbiota and liver clock genes of circadian rhythm disorder mice model. Song D; Ho CT; Zhang X; Wu Z; Cao J Food Res Int; 2020 Dec; 138(Pt A):109769. PubMed ID: 33292949 [TBL] [Abstract][Full Text] [Related]
2. The Modulatory Effect of Sun Y; Ho CT; Liu Y; Zhan S; Wu Z; Zheng X; Zhang X Nutrients; 2022 May; 14(11):. PubMed ID: 35684108 [TBL] [Abstract][Full Text] [Related]
3. A metagenomic analysis of the modulatory effect of Cyclocarya paliurus flavonoids on the intestinal microbiome in a high-fat diet-induced obesity mouse model. Cheng L; Chen Y; Zhang X; Zheng X; Cao J; Wu Z; Qin W; Cheng K J Sci Food Agric; 2019 Jun; 99(8):3967-3975. PubMed ID: 30719705 [TBL] [Abstract][Full Text] [Related]
4. Oolong Tea Polyphenols Ameliorate Circadian Rhythm of Intestinal Microbiome and Liver Clock Genes in Mouse Model. Guo T; Ho CT; Zhang X; Cao J; Wang H; Shao X; Pan D; Wu Z J Agric Food Chem; 2019 Oct; 67(43):11969-11976. PubMed ID: 31583884 [TBL] [Abstract][Full Text] [Related]
5. Omics Analyses of Gut Microbiota in a Circadian Rhythm Disorder Mouse Model Fed with Oolong Tea Polyphenols. Guo T; Song D; Ho CT; Zhang X; Zhang C; Cao J; Wu Z J Agric Food Chem; 2019 Aug; 67(32):8847-8854. PubMed ID: 31328515 [TBL] [Abstract][Full Text] [Related]
6. Metagenomics analysis of intestinal flora modulatory effect of green tea polyphenols by a circadian rhythm dysfunction mouse model. Zhang L; Yan R; Wu Z J Food Biochem; 2020 Oct; 44(10):e13430. PubMed ID: 32776532 [TBL] [Abstract][Full Text] [Related]
7. Omics Analyses of Intestinal Microbiota and Hypothalamus Clock Genes in Circadian Disturbance Model Mice Fed with Green Tea Polyphenols. Zhang Y; Cheng L; Liu Y; Zhang R; Wu Z; Cheng K; Zhang X J Agric Food Chem; 2022 Feb; 70(6):1890-1901. PubMed ID: 35112849 [TBL] [Abstract][Full Text] [Related]
8. Strategies for circadian rhythm disturbances and related psychiatric disorders: a new cue based on plant polysaccharides and intestinal microbiota. Sun Q; Ho CT; Zhang X; Liu Y; Zhang R; Wu Z Food Funct; 2022 Feb; 13(3):1048-1061. PubMed ID: 35050270 [TBL] [Abstract][Full Text] [Related]
9. Single-Cell Transcriptomic Analysis Demonstrates the Regulation of Peach Polysaccharides on Circadian Rhythm Disturbance. Sun Q; Xu W; Liu Y; Zhan S; Shao X; Wu Z; Weng P; Cheng K; Zhang X Mol Nutr Food Res; 2022 Jul; 66(14):e2101170. PubMed ID: 35598297 [TBL] [Abstract][Full Text] [Related]
10. Administration of Exogenous Melatonin Improves the Diurnal Rhythms of the Gut Microbiota in Mice Fed a High-Fat Diet. Yin J; Li Y; Han H; Ma J; Liu G; Wu X; Huang X; Fang R; Baba K; Bin P; Zhu G; Ren W; Tan B; Tosini G; He X; Li T; Yin Y mSystems; 2020 May; 5(3):. PubMed ID: 32430404 [TBL] [Abstract][Full Text] [Related]
11. Capsaicin ameliorates diet-induced disturbances of glucose homeostasis and gut microbiota in mice associated with the circadian clock. Liang W; Ho CT; Lan Y; Xiao J; Huang Q; Cao Y; Lu M Food Funct; 2023 Feb; 14(3):1662-1673. PubMed ID: 36691893 [TBL] [Abstract][Full Text] [Related]
12. Cyclocarya paliurus polysaccharide alleviates liver inflammation in mice via beneficial regulation of gut microbiota and TLR4/MAPK signaling pathways. Wu T; Shen M; Guo X; Huang L; Yang J; Yu Q; Chen Y; Xie J Int J Biol Macromol; 2020 Oct; 160():164-174. PubMed ID: 32464206 [TBL] [Abstract][Full Text] [Related]
13. Clock-Bmal1 mediates MMP9 induction in acrolein-promoted atherosclerosis associated with gut microbiota regulation. Wu X; Chen L; Zeb F; Li C; Jiang P; Chen A; Xu C; Haq IU; Feng Q Environ Pollut; 2019 Sep; 252(Pt B):1455-1463. PubMed ID: 31265956 [TBL] [Abstract][Full Text] [Related]
14. Metagenomic analysis of gut microbiota modulatory effects of jujube (Ziziphus jujuba Mill.) polysaccharides in a colorectal cancer mouse model. Ji X; Hou C; Gao Y; Xue Y; Yan Y; Guo X Food Funct; 2020 Jan; 11(1):163-173. PubMed ID: 31830158 [TBL] [Abstract][Full Text] [Related]
15. The relationship between host circadian rhythms and intestinal microbiota: A new cue to improve health by tea polyphenols. Song D; Yang CS; Zhang X; Wang Y Crit Rev Food Sci Nutr; 2021; 61(1):139-148. PubMed ID: 31997655 [TBL] [Abstract][Full Text] [Related]
16. Metagenomics Analysis of Gut Microbiota in a High Fat Diet-Induced Obesity Mouse Model Fed with (-)-Epigallocatechin 3-O-(3-O-Methyl) Gallate (EGCG3″Me). Zhang X; Chen Y; Zhu J; Zhang M; Ho CT; Huang Q; Cao J Mol Nutr Food Res; 2018 Jul; 62(13):e1800274. PubMed ID: 29762899 [TBL] [Abstract][Full Text] [Related]
17. Timing the Microbes: The Circadian Rhythm of the Gut Microbiome. Liang X; FitzGerald GA J Biol Rhythms; 2017 Dec; 32(6):505-515. PubMed ID: 28862076 [TBL] [Abstract][Full Text] [Related]
18. Acute Sleep-Wake Cycle Shift Results in Community Alteration of Human Gut Microbiome. Liu Z; Wei ZY; Chen J; Chen K; Mao X; Liu Q; Sun Y; Zhang Z; Zhang Y; Dan Z; Tang J; Qin L; Chen JH; Liu X mSphere; 2020 Feb; 5(1):. PubMed ID: 32051239 [TBL] [Abstract][Full Text] [Related]
19. Melatonin Orchestrates Lipid Homeostasis through the Hepatointestinal Circadian Clock and Microbiota during Constant Light Exposure. Hong F; Pan S; Xu P; Xue T; Wang J; Guo Y; Jia L; Qiao X; Li L; Zhai Y Cells; 2020 Feb; 9(2):. PubMed ID: 32093272 [TBL] [Abstract][Full Text] [Related]
20. Gut microbiota directs PPARγ-driven reprogramming of the liver circadian clock by nutritional challenge. Murakami M; Tognini P; Liu Y; Eckel-Mahan KL; Baldi P; Sassone-Corsi P EMBO Rep; 2016 Sep; 17(9):1292-303. PubMed ID: 27418314 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]