These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 33292990)
1. Pest scenario of Spodoptera litura (Fab.) on groundnut under representative concentration pathways (RCPs) based climate change scenarios. Srinivasa Rao M; Rama Rao CA; Sreelakshmi P; Islam A; Subba Rao AVM; Ravindra Chary G; Bhaskar S J Therm Biol; 2020 Dec; 94():102749. PubMed ID: 33292990 [TBL] [Abstract][Full Text] [Related]
2. Model and scenario variations in predicted number of generations of Spodoptera litura Fab. on peanut during future climate change scenario. Rao MS; Swathi P; Rao CA; Rao KV; Raju BM; Srinivas K; Manimanjari D; Maheswari M PLoS One; 2015; 10(2):e0116762. PubMed ID: 25671564 [TBL] [Abstract][Full Text] [Related]
3. Pest scenario of Helicoverpa armigera (Hub.) on pigeonpea during future climate change periods under RCP based projections in India. Srinivasa Rao M; Rama Rao CA; Raju BMK; Subba Rao AVM; Gayatri DLA; Islam A; Prasad TV; Navya M; Srinivas K; Pratibha G; Srinivas I; Prabhakar M; Yadav SK; Bhaskar S; Singh VK; Chaudhari SK Sci Rep; 2023 Apr; 13(1):6788. PubMed ID: 37100788 [TBL] [Abstract][Full Text] [Related]
4. Temperature- and CO2-dependent life table parameters of Spodoptera litura (Noctuidae: Lepidoptera) on sunflower and prediction of pest scenarios. Manimanjari D; Srinivasa Rao M; Swathi P; Rama Rao CA; Vanaja M; Maheswari M J Insect Sci; 2014; 14():. PubMed ID: 25528748 [TBL] [Abstract][Full Text] [Related]
5. Temperature Impacts the Development and Survival of Common Cutworm (Spodoptera litura): Simulation and Visualization of Potential Population Growth in India under Warmer Temperatures through Life Cycle Modelling and Spatial Mapping. Fand BB; Sul NT; Bal SK; Minhas PS PLoS One; 2015; 10(4):e0124682. PubMed ID: 25927609 [TBL] [Abstract][Full Text] [Related]
6. Impact of climate change on Helicoverpa armigera voltinism in different Agro-Climatic Zones of India. Bapatla KG; Singh AD; Sengottaiyan V; Korada RR; Yeddula S J Therm Biol; 2022 May; 106():103229. PubMed ID: 35636881 [TBL] [Abstract][Full Text] [Related]
7. Simulating adaptation strategies to offset potential impacts of climate variability and change on maize yields in Embu County, Kenya. Gummadi S; Kadiyala MDM; Rao KPC; Athanasiadis I; Mulwa R; Kilavi M; Legesse G; Amede T PLoS One; 2020; 15(11):e0241147. PubMed ID: 33151967 [TBL] [Abstract][Full Text] [Related]
8. Spatio-temporal temperature variations in MarkSim multimodel data and their impact on voltinism of fruit fly, Bactrocera species on mango. Choudhary JS; Mali SS; Mukherjee D; Kumari A; Moanaro L; Rao MS; Das B; Singh AK; Bhatt BP Sci Rep; 2019 Jul; 9(1):9708. PubMed ID: 31273224 [TBL] [Abstract][Full Text] [Related]
9. The hotter the better? Climate change and voltinism of Spodoptera eridania estimated with different methods. Sampaio F; Krechemer FS; Marchioro CA J Therm Biol; 2021 May; 98():102946. PubMed ID: 34016363 [TBL] [Abstract][Full Text] [Related]
10. Herbivore- and elicitor-induced resistance in groundnut to Asian armyworm, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). War AR; Paulraj MG; War MY; Ignacimuthu S Plant Signal Behav; 2011 Nov; 6(11):1769-77. PubMed ID: 22042128 [TBL] [Abstract][Full Text] [Related]
11. Assessing climate boundary shifting under climate change scenarios across Nepal. Talchabhadel R; Karki R Environ Monit Assess; 2019 Jul; 191(8):520. PubMed ID: 31359147 [TBL] [Abstract][Full Text] [Related]
12. Future climate projections using the LARS-WG6 downscaling model over Upper Indus Basin, Pakistan. Khan SF; Naeem UA Environ Monit Assess; 2023 Jun; 195(7):810. PubMed ID: 37284969 [TBL] [Abstract][Full Text] [Related]
13. The impact of future climate on orange-fleshed sweet potato production in arid areas of Northern Ethiopia. A case study in Afar region. Gloria Peace Lamaro ; Tsehaye Y; Girma A; Rubangakene D Heliyon; 2023 Jul; 9(7):e17288. PubMed ID: 37449163 [TBL] [Abstract][Full Text] [Related]
14. Extreme climate projections under representative concentration pathways in the Lower Songkhram River Basin, Thailand. Shrestha S; Roachanakanan R Heliyon; 2021 Feb; 7(2):e06146. PubMed ID: 33665405 [TBL] [Abstract][Full Text] [Related]
15. Metabolic insights into the cold survival strategy and overwintering of the common cutworm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Zhu W; Zhang H; Meng Q; Wang M; Zhou G; Li X; Wang H; Miao L; Qin Q; Zhang J J Insect Physiol; 2017 Jul; 100():53-64. PubMed ID: 28529155 [TBL] [Abstract][Full Text] [Related]
16. Projections for the changes in growing season length of tree-ring formation on the Tibetan Plateau based on CMIP5 model simulations. He M; Yang B; Shishov V; Rossi S; Bräuning A; Ljungqvist FC; Grießinger J Int J Biometeorol; 2018 Apr; 62(4):631-641. PubMed ID: 29150764 [TBL] [Abstract][Full Text] [Related]
17. Potential of trap crops for integrated management of the tropical armyworm, Spodoptera litura in tobacco. Zhou Z; Chen Z; Xu Z J Insect Sci; 2010; 10():117. PubMed ID: 20874598 [TBL] [Abstract][Full Text] [Related]
18. Temperature and Host Plant Impacts on the Development of Maharjan R; Hong S; Ahn J; Yoon Y; Jang Y; Kim J; Lee M; Park K; Yi H Insects; 2023 Apr; 14(5):. PubMed ID: 37233040 [TBL] [Abstract][Full Text] [Related]
19. Climate-associated rice yield change in the Northeast China Plain: A simulation analysis based on CMIP5 multi-model ensemble projection. Zhang H; Zhou G; Liu L; Wang B; Xiao D; He L Sci Total Environ; 2019 May; 666():126-138. PubMed ID: 30798223 [TBL] [Abstract][Full Text] [Related]
20. Modeling the impact of crop rotation with legume on nitrous oxide emissions from rain-fed agricultural systems in Australia under alternative future climate scenarios. Ma Y; Schwenke G; Sun L; Liu L; Wang B; Yang B Sci Total Environ; 2018 Jul; 630():1544-1552. PubMed ID: 29554771 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]