BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 33293052)

  • 21. Simultaneous degradation of n-hexane and production of biosurfactants by Pseudomonas sp. strain NEE2 isolated from oil-contaminated soils.
    He S; Ni Y; Lu L; Chai Q; Yu T; Shen Z; Yang C
    Chemosphere; 2020 Mar; 242():125237. PubMed ID: 31896179
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biosurfactant-assisted phytoremediation of multi-contaminated industrial soil using sunflower (Helianthus annuus L.).
    Liduino VS; Servulo EFC; Oliveira FJS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Jun; 53(7):609-616. PubMed ID: 29388890
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation of biosurfactant producers, optimization and properties of biosurfactant produced by Acinetobacter sp. from petroleum-contaminated soil.
    Chen J; Huang PT; Zhang KY; Ding FR
    J Appl Microbiol; 2012 Apr; 112(4):660-71. PubMed ID: 22268814
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Modification-bioremediation of copper, lead, and cadmium-contaminated soil by combined ryegrass (Lolium multiflorum Lam.) and Pseudomonas aeruginosa treatment.
    Shi GY; Yan YJ; Yu ZQ; Zhang L; Cheng YY; Shi WL
    Environ Sci Pollut Res Int; 2020 Oct; 27(30):37668-37676. PubMed ID: 32608000
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phytoremediation potential of Arundo donax (Giant Reed) in contaminated soil by heavy metals.
    Cristaldi A; Oliveri Conti G; Cosentino SL; Mauromicale G; Copat C; Grasso A; Zuccarello P; Fiore M; Restuccia C; Ferrante M
    Environ Res; 2020 Jun; 185():109427. PubMed ID: 32247150
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simultaneous biosurfactant-assisted remediation and corn cultivation on cadmium-contaminated soil.
    Mekwichai P; Tongcumpou C; Kittipongvises S; Tuntiwiwattanapun N
    Ecotoxicol Environ Saf; 2020 Apr; 192():110298. PubMed ID: 32061986
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Production of Biosurfactant Produced from Used Cooking Oil by
    Md Badrul Hisham NH; Ibrahim MF; Ramli N; Abd-Aziz S
    Molecules; 2019 Jul; 24(14):. PubMed ID: 31323813
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Improved remediation of co-contaminated soils by heavy metals and PAHs with biosurfactant-enhanced soil washing.
    Zhang X; Zhang X; Wang S; Zhao S
    Sci Rep; 2022 Mar; 12(1):3801. PubMed ID: 35260619
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biosurfactant-facilitated remediation of metal-contaminated soils.
    Miller RM
    Environ Health Perspect; 1995 Feb; 103 Suppl 1(Suppl 1):59-62. PubMed ID: 7621801
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery.
    Zhang J; Xue Q; Gao H; Lai H; Wang P
    Microb Cell Fact; 2016 Oct; 15(1):168. PubMed ID: 27716284
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioflocculant production and heavy metal sorption by metal resistant bacterial isolates from gold mining soil.
    Ayangbenro AS; Babalola OO; Aremu OS
    Chemosphere; 2019 Sep; 231():113-120. PubMed ID: 31128345
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Leaching Remediation of Copper and Lead Contaminated Lou Soil by Saponin Under Different Conditions].
    Deng HX; Yang YL; Li Z; Xu Y; Li RH; Meng ZF; Yang YT
    Huan Jing Ke Xue; 2015 Apr; 36(4):1445-52. PubMed ID: 26164925
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Heavy metal removal from sediments by biosurfactants.
    Mulligan CN; Yong RN; Gibbs BF
    J Hazard Mater; 2001 Jul; 85(1-2):111-25. PubMed ID: 11463506
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Remediation of metal-contaminated soil and sludge using biosurfactant technology.
    Maier RM; Neilson JW; Artiola JF; Jordan FL; Glenn EP; Descher SM
    Int J Occup Med Environ Health; 2001; 14(3):241-8. PubMed ID: 11764852
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production of biosurfactant using the endemic bacterial community of a PAHs contaminated soil, and its potential use for PAHs remobilization.
    Cazals F; Huguenot D; Crampon M; Colombano S; Betelu S; Galopin N; Perrault A; Simonnot MO; Ignatiadis I; Rossano S
    Sci Total Environ; 2020 Mar; 709():136143. PubMed ID: 31884277
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Spatial Variation of Heavy Metals in Soils and Its Ecological Risk Evaluation in a Typical
    Zhang HJ; Zhao KL; Ye ZQ; Xu B; Zhao WM; Gu XB; Zhang HF
    Huan Jing Ke Xue; 2018 Jun; 39(6):2893-2903. PubMed ID: 29965648
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Removal of Cd, Pb, Zn, Cu in smelter soil by citric acid leaching.
    Ke X; Zhang FJ; Zhou Y; Zhang HJ; Guo GL; Tian Y
    Chemosphere; 2020 Sep; 255():126690. PubMed ID: 32387903
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J; Xie ZM; Zhu YG; Naidu R
    J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced treatment of the oil-contaminated soil using biosurfactant-assisted washing operation combined with H
    Fanaei F; Moussavi G; Shekoohiyan S
    J Environ Manage; 2020 Oct; 271():110941. PubMed ID: 32778265
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Coupling bioleaching and electrokinetics to remediate heavy metal contaminated soils.
    Huang Q; Yu Z; Pang Y; Wang Y; Cai Z
    Bull Environ Contam Toxicol; 2015 Apr; 94(4):519-24. PubMed ID: 25680933
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.