BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 33293419)

  • 1. Dynamics of RNA polymerase II and elongation factor Spt4/5 recruitment during activator-dependent transcription.
    Rosen GA; Baek I; Friedman LJ; Joo YJ; Buratowski S; Gelles J
    Proc Natl Acad Sci U S A; 2020 Dec; 117(51):32348-32357. PubMed ID: 33293419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochemical Analysis of Yeast Suppressor of Ty 4/5 (Spt4/5) Reveals the Importance of Nucleic Acid Interactions in the Prevention of RNA Polymerase II Arrest.
    Crickard JB; Fu J; Reese JC
    J Biol Chem; 2016 May; 291(19):9853-70. PubMed ID: 26945063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The yeast transcription elongation factor Spt4/5 is a sequence-specific RNA binding protein.
    Blythe AJ; Yazar-Klosinski B; Webster MW; Chen E; Vandevenne M; Bendak K; Mackay JP; Hartzog GA; Vrielink A
    Protein Sci; 2016 Sep; 25(9):1710-21. PubMed ID: 27376968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spt4 facilitates the movement of RNA polymerase II through the +2 nucleosomal barrier.
    Uzun Ü; Brown T; Fischl H; Angel A; Mellor J
    Cell Rep; 2021 Sep; 36(13):109755. PubMed ID: 34592154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The elongation factor Spt4/5 regulates RNA polymerase II transcription through the nucleosome.
    Crickard JB; Lee J; Lee TH; Reese JC
    Nucleic Acids Res; 2017 Jun; 45(11):6362-6374. PubMed ID: 28379497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human Spt6 stimulates transcription elongation by RNA polymerase II in vitro.
    Endoh M; Zhu W; Hasegawa J; Watanabe H; Kim DK; Aida M; Inukai N; Narita T; Yamada T; Furuya A; Sato H; Yamaguchi Y; Mandal SS; Reinberg D; Wada T; Handa H
    Mol Cell Biol; 2004 Apr; 24(8):3324-36. PubMed ID: 15060154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular evidence for a positive role of Spt4 in transcription elongation.
    Rondón AG; García-Rubio M; González-Barrera S; Aguilera A
    EMBO J; 2003 Feb; 22(3):612-20. PubMed ID: 12554661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ubiquitin fusion constructs allow the expression and purification of multi-KOW domain complexes of the Saccharomyces cerevisiae transcription elongation factor Spt4/5.
    Blythe A; Gunasekara S; Walshe J; Mackay JP; Hartzog GA; Vrielink A
    Protein Expr Purif; 2014 Aug; 100():54-60. PubMed ID: 24859675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hot1 factor recruits co-activator Sub1 and elongation complex Spt4/5 to osmostress genes.
    Gomar-Alba M; Del Olmo M
    Biochem J; 2016 Oct; 473(19):3065-79. PubMed ID: 27480106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationships Between RNA Polymerase II Activity and Spt Elongation Factors to Spt- Phenotype and Growth in Saccharomyces cerevisiae.
    Cui P; Jin H; Vutukuru MR; Kaplan CD
    G3 (Bethesda); 2016 Aug; 6(8):2489-504. PubMed ID: 27261007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The C-terminal repeat domain of Spt5 plays an important role in suppression of Rad26-independent transcription coupled repair.
    Ding B; LeJeune D; Li S
    J Biol Chem; 2010 Feb; 285(8):5317-26. PubMed ID: 20042611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ESS1 prolyl isomerase and its suppressor BYE1 interact with RNA pol II to inhibit transcription elongation in Saccharomyces cerevisiae.
    Wu X; Rossettini A; Hanes SD
    Genetics; 2003 Dec; 165(4):1687-702. PubMed ID: 14704159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the Schizosaccharomyces pombe Spt5-Spt4 complex.
    Schwer B; Schneider S; Pei Y; Aronova A; Shuman S
    RNA; 2009 Jul; 15(7):1241-50. PubMed ID: 19460865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of transcriptional elongation and cotranscriptional histone modification by the yeast BUR kinase substrate Spt5.
    Zhou K; Kuo WH; Fillingham J; Greenblatt JF
    Proc Natl Acad Sci U S A; 2009 Apr; 106(17):6956-61. PubMed ID: 19365074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transcription elongation factor Spt5 influences transcription by RNA polymerase I positively and negatively.
    Anderson SJ; Sikes ML; Zhang Y; French SL; Salgia S; Beyer AL; Nomura M; Schneider DA
    J Biol Chem; 2011 May; 286(21):18816-24. PubMed ID: 21467039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cotranscriptional recruitment of She2p by RNA pol II elongation factor Spt4-Spt5/DSIF promotes mRNA localization to the yeast bud.
    Shen Z; St-Denis A; Chartrand P
    Genes Dev; 2010 Sep; 24(17):1914-26. PubMed ID: 20713510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DSIF and RNA polymerase II CTD phosphorylation coordinate the recruitment of Rpd3S to actively transcribed genes.
    Drouin S; Laramée L; Jacques PÉ; Forest A; Bergeron M; Robert F
    PLoS Genet; 2010 Oct; 6(10):e1001173. PubMed ID: 21060864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of Transcription Elongation Factor DSIF (Spt4-Spt5).
    Decker TM
    J Mol Biol; 2021 Jul; 433(14):166657. PubMed ID: 32987031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spt4 Promotes Pol I Processivity and Transcription Elongation.
    Huffines AK; Edwards YJK; Schneider DA
    Genes (Basel); 2021 Mar; 12(3):. PubMed ID: 33809333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of a splice array experiment elucidates roles of chromatin elongation factor Spt4-5 in splicing.
    Xiao Y; Yang YH; Burckin TA; Shiue L; Hartzog GA; Segal MR
    PLoS Comput Biol; 2005 Sep; 1(4):e39. PubMed ID: 16172632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.