These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 33293562)
1. Heatwaves during low tide are critical for the physiological performance of intertidal macroalgae under global warming scenarios. Román M; Román S; Vázquez E; Troncoso J; Olabarria C Sci Rep; 2020 Dec; 10(1):21408. PubMed ID: 33293562 [TBL] [Abstract][Full Text] [Related]
2. Effects of climate change factors on marine macroalgae: A review. Ji Y; Gao K Adv Mar Biol; 2021; 88():91-136. PubMed ID: 34119047 [TBL] [Abstract][Full Text] [Related]
3. Photoprotective responses in a brown macroalgae Cystoseira tamariscifolia to increases in CO Celis-Plá PSM; Martínez B; Korbee N; Hall-Spencer JM; Figueroa FL Mar Environ Res; 2017 Sep; 130():157-165. PubMed ID: 28764959 [TBL] [Abstract][Full Text] [Related]
5. Changes in the distribution of intertidal macroalgae along a longitudinal gradient in the northern coast of Spain. Ramos E; Guinda X; Puente A; de la Hoz CF; Juanes JA Mar Environ Res; 2020 May; 157():104930. PubMed ID: 32275512 [TBL] [Abstract][Full Text] [Related]
6. Removal of an established invader can change gross primary production of native macroalgae and alter carbon flow in intertidal rock pools. Rossi F; Viejo RM; Duarte L; Vaz-Pinto F; Gestoso I; Olabarria C PLoS One; 2019; 14(12):e0217121. PubMed ID: 31794557 [TBL] [Abstract][Full Text] [Related]
7. Combining physiological threshold knowledge to species distribution models is key to improving forecasts of the future niche for macroalgae. Martínez B; Arenas F; Trilla A; Viejo RM; Carreño F Glob Chang Biol; 2015 Apr; 21(4):1422-33. PubMed ID: 24917488 [TBL] [Abstract][Full Text] [Related]
8. Possible change in distribution of seaweed, Sargassum horneri, in northeast Asia under A2 scenario of global warming and consequent effect on some fish. Komatsu T; Fukuda M; Mikami A; Mizuno S; Kantachumpoo A; Tanoue H; Kawamiya M Mar Pollut Bull; 2014 Aug; 85(2):317-24. PubMed ID: 24835373 [TBL] [Abstract][Full Text] [Related]
9. Effects of increased CO Wu H; Feng J; Li X; Zhao C; Liu Y; Yu J; Xu J Mar Pollut Bull; 2019 Sep; 146():639-644. PubMed ID: 31426203 [TBL] [Abstract][Full Text] [Related]
10. Ocean warming and increased salinity threaten Bostrychia (Rhodophyta) species from genetically divergent populations. Borburema HDS; Yokoya NS; Souza JMC; Nauer F; Barbosa-Silva MS; Marinho-Soriano E Mar Environ Res; 2022 Jun; 178():105662. PubMed ID: 35642998 [TBL] [Abstract][Full Text] [Related]
11. Temporal variability of sea surface temperature affects marine macrophytes range retractions as well as gradual warming. Chefaoui RM; Martínez BD; Viejo RM Sci Rep; 2024 Jun; 14(1):14206. PubMed ID: 38902310 [TBL] [Abstract][Full Text] [Related]
12. Adjustments in fatty acid composition is a mechanism that can explain resilience to marine heatwaves and future ocean conditions in the habitat-forming seaweed Phyllospora comosa (Labillardière) C.Agardh. Britton D; Schmid M; Noisette F; Havenhand JN; Paine ER; McGraw CM; Revill AT; Virtue P; Nichols PD; Mundy CN; Hurd CL Glob Chang Biol; 2020 Jun; 26(6):3512-3524. PubMed ID: 32105368 [TBL] [Abstract][Full Text] [Related]
13. The impact of climate change on the geographical distribution of habitat-forming macroalgae in the Rías Baixas. Des M; Martínez B; deCastro M; Viejo RM; Sousa MC; Gómez-Gesteira M Mar Environ Res; 2020 Oct; 161():105074. PubMed ID: 33070933 [TBL] [Abstract][Full Text] [Related]
14. Interaction strength between different grazers and macroalgae mediated by ocean acidification over warming gradients. Sampaio E; Rodil IF; Vaz-Pinto F; Fernández A; Arenas F Mar Environ Res; 2017 Apr; 125():25-33. PubMed ID: 28088495 [TBL] [Abstract][Full Text] [Related]
15. Persistence of seaweed forests in the anthropocene will depend on warming and marine heatwave profiles. Straub SC; Wernberg T; Marzinelli EM; Vergés A; Kelaher BP; Coleman MA J Phycol; 2022 Feb; 58(1):22-35. PubMed ID: 34800039 [TBL] [Abstract][Full Text] [Related]
16. Global impacts of marine heatwaves on coastal foundation species. Smith KE; Aubin M; Burrows MT; Filbee-Dexter K; Hobday AJ; Holbrook NJ; King NG; Moore PJ; Sen Gupta A; Thomsen M; Wernberg T; Wilson E; Smale DA Nat Commun; 2024 Jun; 15(1):5052. PubMed ID: 38871692 [TBL] [Abstract][Full Text] [Related]
17. Distribution of a canopy-forming alga along the Western Atlantic Ocean under global warming: The importance of depth range. Carneiro IM; Paiva PC; Bertocci I; Lorini ML; de Széchy MTM Mar Environ Res; 2023 Jun; 188():106013. PubMed ID: 37209442 [TBL] [Abstract][Full Text] [Related]
18. Seaweed assemblages under a climate change scenario: Functional responses to temperature of eight intertidal seaweeds match recent abundance shifts. Piñeiro-Corbeira C; Barreiro R; Cremades J; Arenas F Sci Rep; 2018 Aug; 8(1):12978. PubMed ID: 30154576 [TBL] [Abstract][Full Text] [Related]
19. Canopy-forming macroalgae can adapt to marine heatwaves. Fabbrizzi E; Munari M; Fraschetti S; Arena C; Chiarore A; Cannavacciuolo A; Colletti A; Costanzo G; Soler-Fajardo A; Nannini M; Savinelli B; Silvestrini C; Vitale E; Tamburello L Environ Res; 2023 Dec; 238(Pt 2):117218. PubMed ID: 37778611 [TBL] [Abstract][Full Text] [Related]
20. Process evaluation and techno-economic analysis of biodiesel production from marine macroalgae Codium tomentosum. Gengiah K; Gurunathan B; Rajendran N; Han J Bioresour Technol; 2022 May; 351():126969. PubMed ID: 35276378 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]