BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 33293610)

  • 1. Programmed spatial organization of biomacromolecules into discrete, coacervate-based protocells.
    Altenburg WJ; Yewdall NA; Vervoort DFM; van Stevendaal MHME; Mason AF; van Hest JCM
    Nat Commun; 2020 Dec; 11(1):6282. PubMed ID: 33293610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physicochemical Characterization of Polymer-Stabilized Coacervate Protocells.
    Yewdall NA; Buddingh BC; Altenburg WJ; Timmermans SBPE; Vervoort DFM; Abdelmohsen LKEA; Mason AF; van Hest JCM
    Chembiochem; 2019 Oct; 20(20):2643-2652. PubMed ID: 31012235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide-Based Coacervate Protocells with Cytoprotective Metal-Phenolic Network Membranes.
    Jiang L; Zeng Y; Li H; Lin Z; Liu H; Richardson JJ; Gao Z; Wu D; Liu L; Caruso F; Zhou J
    J Am Chem Soc; 2023 Nov; 145(44):24108-24115. PubMed ID: 37788442
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Supramolecular Nanoscaffolds within Cytomimetic Protocells as Signal Localization Hubs.
    Magdalena Estirado E; Mason AF; Alemán García MÁ; van Hest JCM; Brunsveld L
    J Am Chem Soc; 2020 May; 142(20):9106-9111. PubMed ID: 32356660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering of Biocompatible Coacervate-Based Synthetic Cells.
    van Stevendaal MHME; Vasiukas L; Yewdall NA; Mason AF; van Hest JCM
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):7879-7889. PubMed ID: 33587612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Artificial morphogen-mediated differentiation in synthetic protocells.
    Tian L; Li M; Patil AJ; Drinkwater BW; Mann S
    Nat Commun; 2019 Jul; 10(1):3321. PubMed ID: 31346180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Terpolymer-stabilized complex coacervates: A robust and versatile synthetic cell platform.
    Mason AF; Altenburg WJ; Song S; van Stevendaal M; van Hest JCM
    Methods Enzymol; 2021; 646():51-82. PubMed ID: 33453933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolving protocells to prototissues: rational design of a missing link.
    Mantri S; Sapra KT
    Biochem Soc Trans; 2013 Oct; 41(5):1159-65. PubMed ID: 24059502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Editorial overview: synthetic biology.
    Luisi PL; Chiarabelli C; Stano P
    Curr Opin Chem Biol; 2014 Oct; 22():v-vii. PubMed ID: 25438803
    [No Abstract]   [Full Text] [Related]  

  • 10. A Floating Mold Technique for the Programmed Assembly of Protocells into Protocellular Materials Capable of Non-Equilibrium Biochemical Sensing.
    Galanti A; Moreno-Tortolero RO; Azad R; Cross S; Davis S; Gobbo P
    Adv Mater; 2021 Jun; 33(24):e2100340. PubMed ID: 33960013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA-based communication in populations of synthetic protocells.
    Joesaar A; Yang S; Bögels B; van der Linden A; Pieters P; Kumar BVVSP; Dalchau N; Phillips A; Mann S; de Greef TFA
    Nat Nanotechnol; 2019 Apr; 14(4):369-378. PubMed ID: 30833694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osmotic-Induced Reconfiguration and Activation in Membranized Coacervate-Based Protocells.
    Zhang Y; Wang Z; Li M; Xu C; Gao N; Yin Z; Wang K; Mann S; Liu J
    J Am Chem Soc; 2023 May; 145(18):10396-10403. PubMed ID: 37104061
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial Organization in Proteinaceous Membrane-Stabilized Coacervate Protocells.
    Li J; Liu X; Abdelmohsen LKEA; Williams DS; Huang X
    Small; 2019 Sep; 15(36):e1902893. PubMed ID: 31298806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial Positioning and Chemical Coupling in Coacervate-in-Proteinosome Protocells.
    Booth R; Qiao Y; Li M; Mann S
    Angew Chem Int Ed Engl; 2019 Jul; 58(27):9120-9124. PubMed ID: 31034692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mastering Complexity: Towards Bottom-up Construction of Multifunctional Eukaryotic Synthetic Cells.
    Göpfrich K; Platzman I; Spatz JP
    Trends Biotechnol; 2018 Sep; 36(9):938-951. PubMed ID: 29685820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous structuration in coacervate-based protocells by polyoxometalate-mediated membrane assembly.
    Williams DS; Patil AJ; Mann S
    Small; 2014 May; 10(9):1830-40. PubMed ID: 24515342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biofunctional coacervate-based artificial protocells with membrane-like and cytoplasm-like structures for the treatment of persistent hyperuricemia.
    Hu Q; Lan H; Tian Y; Li X; Wang M; Zhang J; Yu Y; Chen W; Kong L; Guo Y; Zhang Z
    J Control Release; 2024 Jan; 365():176-192. PubMed ID: 37992873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coacervate Microdroplets as Synthetic Protocells for Cell Mimicking and Signaling Communications.
    Wang Z; Zhang M; Zhou Y; Zhang Y; Wang K; Liu J
    Small Methods; 2023 Dec; 7(12):e2300042. PubMed ID: 36908048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic cellularity based on non-lipid micro-compartments and protocell models.
    Li M; Huang X; Tang TY; Mann S
    Curr Opin Chem Biol; 2014 Oct; 22():1-11. PubMed ID: 24952153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active coacervate droplets are protocells that grow and resist Ostwald ripening.
    Nakashima KK; van Haren MHI; André AAM; Robu I; Spruijt E
    Nat Commun; 2021 Jun; 12(1):3819. PubMed ID: 34155210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.