These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 33294135)
1. Enzymatic biosynthesis of B-complex vitamins is supplied by diverse microbiota in the Tobias NJ; Eberhard FE; Guarneri AA Comput Struct Biotechnol J; 2020; 18():3395-3401. PubMed ID: 33294135 [No Abstract] [Full Text] [Related]
2. Exposure to Trypanosoma parasites induces changes in the microbiome of the Chagas disease vector Rhodnius prolixus. Eberhard FE; Klimpel S; Guarneri AA; Tobias NJ Microbiome; 2022 Mar; 10(1):45. PubMed ID: 35272716 [TBL] [Abstract][Full Text] [Related]
3. Impact of Trypanosoma cruzi on antimicrobial peptide gene expression and activity in the fat body and midgut of Rhodnius prolixus. Vieira CS; Waniek PJ; Castro DP; Mattos DP; Moreira OC; Azambuja P Parasit Vectors; 2016 Mar; 9():119. PubMed ID: 26931761 [TBL] [Abstract][Full Text] [Related]
4. A Kazal-type inhibitor is modulated by Trypanosoma cruzi to control microbiota inside the anterior midgut of Rhodnius prolixus. Soares TS; Buarque DS; Queiroz BR; Gomes CM; Braz GR; Araújo RN; Pereira MH; Guarneri AA; Tanaka AS Biochimie; 2015 May; 112():41-8. PubMed ID: 25731714 [TBL] [Abstract][Full Text] [Related]
6. The NF-κB Inhibitor, IMD-0354, Affects Immune Gene Expression, Bacterial Microbiota and Vieira CS; Moreira OC; Batista KKS; Ratcliffe NA; Castro DP; Azambuja P Front Physiol; 2018; 9():1189. PubMed ID: 30233391 [No Abstract] [Full Text] [Related]
7. Using axenic and gnotobiotic insects to examine the role of different microbes on the development and reproduction of the kissing bug Rhodnius prolixus (Hemiptera: Reduviidae). Gilliland CA; Patel V; McCormick AC; Mackett BM; Vogel KJ Mol Ecol; 2023 Feb; 32(4):920-935. PubMed ID: 36464913 [TBL] [Abstract][Full Text] [Related]
8. Lipoproteins from vertebrate host blood plasma are involved in Trypanosoma cruzi epimastigote agglutination and participate in interaction with the vector insect, Rhodnius prolixus. Moreira CJC; De Cicco NNT; Galdino TS; Feder D; Gonzalez MS; Miguel RB; Coura JR; Castro HC; Azambuja P; Atella GC; Ratcliffe NA; Mello CB Exp Parasitol; 2018 Dec; 195():24-33. PubMed ID: 30261188 [TBL] [Abstract][Full Text] [Related]
9. Trypanosoma cruzi immune response modulation decreases microbiota in Rhodnius prolixus gut and is crucial for parasite survival and development. Castro DP; Moraes CS; Gonzalez MS; Ratcliffe NA; Azambuja P; Garcia ES PLoS One; 2012; 7(5):e36591. PubMed ID: 22574189 [TBL] [Abstract][Full Text] [Related]
10. Triatomine bugs, their microbiota and Trypanosoma cruzi: asymmetric responses of bacteria to an infected blood meal. Díaz S; Villavicencio B; Correia N; Costa J; Haag KL Parasit Vectors; 2016 Dec; 9(1):636. PubMed ID: 27938415 [TBL] [Abstract][Full Text] [Related]
11. Draft Genome Sequence of Rhodococcus rhodnii Strain LMG5362, a Symbiont of Rhodnius prolixus (Hemiptera, Reduviidae, Triatominae), the Principle Vector of Trypanosoma cruzi. Pachebat JA; van Keulen G; Whitten MM; Girdwood S; Del Sol R; Dyson PJ; Facey PD Genome Announc; 2013 Jun; 1(3):. PubMed ID: 23788540 [TBL] [Abstract][Full Text] [Related]
12. Colonization of Rhodnius prolixus gut by Trypanosoma cruzi involves an extensive parasite killing. Ferreira RC; Kessler RL; Lorenzo MG; Paim RM; Ferreira Lde L; Probst CM; Alves-Silva J; Guarneri AA Parasitology; 2016 Apr; 143(4):434-43. PubMed ID: 26818093 [TBL] [Abstract][Full Text] [Related]
13. Rhodnius prolixus: from physiology by Wigglesworth to recent studies of immune system modulation by Trypanosoma cruzi and Trypanosoma rangeli. Azambuja P; Garcia ES; Waniek PJ; Vieira CS; Figueiredo MB; Gonzalez MS; Mello CB; Castro DP; Ratcliffe NA J Insect Physiol; 2017; 97():45-65. PubMed ID: 27866813 [TBL] [Abstract][Full Text] [Related]
14. Nitric oxide effects on Rhodnius prolixus's immune responses, gut microbiota and Trypanosoma cruzi development. Batista KKDS; Vieira CS; Florentino EB; Caruso KFB; Teixeira PTP; Moraes CDS; Genta FA; de Azambuja P; de Castro DP J Insect Physiol; 2020 Oct; 126():104100. PubMed ID: 32822690 [TBL] [Abstract][Full Text] [Related]
15. Trypanosoma cruzi: synergistic cytotoxicity of multiple amphipathic anti-microbial peptides to T. cruzi and potential bacterial hosts. Fieck A; Hurwitz I; Kang AS; Durvasula R Exp Parasitol; 2010 Aug; 125(4):342-7. PubMed ID: 20206169 [TBL] [Abstract][Full Text] [Related]
16. Transformation of an insect symbiont and expression of a foreign gene in the Chagas' disease vector Rhodnius prolixus. Beard CB; Mason PW; Aksoy S; Tesh RB; Richards FF Am J Trop Med Hyg; 1992 Feb; 46(2):195-200. PubMed ID: 1539755 [TBL] [Abstract][Full Text] [Related]
17. Physalin B inhibits Trypanosoma cruzi infection in the gut of Rhodnius prolixus by affecting the immune system and microbiota. Castro DP; Moraes CS; Gonzalez MS; Ribeiro IM; Tomassini TC; Azambuja P; Garcia ES J Insect Physiol; 2012 Dec; 58(12):1620-5. PubMed ID: 23085484 [TBL] [Abstract][Full Text] [Related]
18. Modeling horizontal gene transfer (HGT) in the gut of the Chagas disease vector Rhodnius prolixus. Matthews S; Rao VS; Durvasula RV Parasit Vectors; 2011 May; 4():77. PubMed ID: 21569540 [TBL] [Abstract][Full Text] [Related]
19. Rhodnius prolixus interaction with Trypanosoma rangeli: modulation of the immune system and microbiota population. Vieira CS; Mattos DP; Waniek PJ; Santangelo JM; Figueiredo MB; Gumiel M; da Mota FF; Castro DP; Garcia ES; Azambuja P Parasit Vectors; 2015 Mar; 8():135. PubMed ID: 25888720 [TBL] [Abstract][Full Text] [Related]
20. Trypanosoma cruzi-Trypanosoma rangeli co-infection ameliorates negative effects of single trypanosome infections in experimentally infected Rhodnius prolixus. Peterson JK; Graham AL; Elliott RJ; Dobson AP; Triana Chávez O Parasitology; 2016 Aug; 143(9):1157-67. PubMed ID: 27174360 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]