These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 33294840)

  • 21. Focus: The interface between data collection and data processing in cryo-EM.
    Biyani N; Righetto RD; McLeod R; Caujolle-Bert D; Castano-Diez D; Goldie KN; Stahlberg H
    J Struct Biol; 2017 May; 198(2):124-133. PubMed ID: 28344036
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Semi-automated selection of cryo-EM particles in RELION-1.3.
    Scheres SH
    J Struct Biol; 2015 Feb; 189(2):114-22. PubMed ID: 25486611
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TranSPHIRE: automated and feedback-optimized on-the-fly processing for cryo-EM.
    Stabrin M; Schoenfeld F; Wagner T; Pospich S; Gatsogiannis C; Raunser S
    Nat Commun; 2020 Nov; 11(1):5716. PubMed ID: 33177513
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient 3D-CTF correction for cryo-electron tomography using NovaCTF improves subtomogram averaging resolution to 3.4Å.
    Turoňová B; Schur FKM; Wan W; Briggs JAG
    J Struct Biol; 2017 Sep; 199(3):187-195. PubMed ID: 28743638
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-resolution single-particle imaging at 100-200 keV with the Gatan Alpine direct electron detector.
    Chan LM; Courteau BJ; Maker A; Wu M; Basanta B; Mehmood H; Bulkley D; Joyce D; Lee BC; Mick S; Gulati S; Lander GC; Verba KA
    bioRxiv; 2024 Feb; ():. PubMed ID: 38405886
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-speed high-resolution data collection on a 200 keV cryo-TEM.
    Peck JV; Fay JF; Strauss JD
    IUCrJ; 2022 Mar; 9(Pt 2):243-252. PubMed ID: 35371504
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Xmipp 3.0: an improved software suite for image processing in electron microscopy.
    de la Rosa-Trevín JM; Otón J; Marabini R; Zaldívar A; Vargas J; Carazo JM; Sorzano CO
    J Struct Biol; 2013 Nov; 184(2):321-8. PubMed ID: 24075951
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure of HIV-1 capsid assemblies by cryo-electron microscopy and iterative helical real-space reconstruction.
    Meng X; Zhao G; Zhang P
    J Vis Exp; 2011 Aug; (54):. PubMed ID: 21860371
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabrication of carbon films with ∼ 500nm holes for cryo-EM with a direct detector device.
    Marr CR; Benlekbir S; Rubinstein JL
    J Struct Biol; 2014 Jan; 185(1):42-7. PubMed ID: 24269484
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep-learning with synthetic data enables automated picking of cryo-EM particle images of biological macromolecules.
    Yao R; Qian J; Huang Q
    Bioinformatics; 2020 Feb; 36(4):1252-1259. PubMed ID: 31584618
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A deep convolutional neural network approach to single-particle recognition in cryo-electron microscopy.
    Zhu Y; Ouyang Q; Mao Y
    BMC Bioinformatics; 2017 Jul; 18(1):348. PubMed ID: 28732461
    [TBL] [Abstract][Full Text] [Related]  

  • 32. cryoem-cloud-tools: A software platform to deploy and manage cryo-EM jobs in the cloud.
    Cianfrocco MA; Lahiri I; DiMaio F; Leschziner AE
    J Struct Biol; 2018 Sep; 203(3):230-235. PubMed ID: 29864529
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Volta phase plate data collection facilitates image processing and cryo-EM structure determination.
    von Loeffelholz O; Papai G; Danev R; Myasnikov AG; Natchiar SK; Hazemann I; Ménétret JF; Klaholz BP
    J Struct Biol; 2018 Jun; 202(3):191-199. PubMed ID: 29337113
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A self-supervised workflow for particle picking in cryo-EM.
    McSweeney DM; McSweeney SM; Liu Q
    IUCrJ; 2020 Jul; 7(Pt 4):719-727. PubMed ID: 32695418
    [TBL] [Abstract][Full Text] [Related]  

  • 35. SwarmPS: rapid, semi-automated single particle selection software.
    Woolford D; Ericksson G; Rothnagel R; Muller D; Landsberg MJ; Pantelic RS; McDowall A; Pailthorpe B; Young PR; Hankamer B; Banks J
    J Struct Biol; 2007 Jan; 157(1):174-88. PubMed ID: 16774837
    [TBL] [Abstract][Full Text] [Related]  

  • 36. From Tube to Structure: SPA Cryo-EM Workflow Using Apoferritin as an Example.
    Diebolder CA; Dillard RS; Renault L
    Methods Mol Biol; 2021; 2305():229-256. PubMed ID: 33950393
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Super-Clustering Approach for Fully Automated Single Particle Picking in Cryo-EM.
    Al-Azzawi A; Ouadou A; Tanner JJ; Cheng J
    Genes (Basel); 2019 Aug; 10(9):. PubMed ID: 31480377
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SimpliPyTEM: An open-source Python library and app to simplify transmission electron microscopy and in situ-TEM image analysis.
    Ing G; Stewart A; Battaglia G; Ruiz-Perez L
    PLoS One; 2023; 18(10):e0285691. PubMed ID: 37796914
    [TBL] [Abstract][Full Text] [Related]  

  • 39. SIMPLE: Software for ab initio reconstruction of heterogeneous single-particles.
    Elmlund D; Elmlund H
    J Struct Biol; 2012 Dec; 180(3):420-7. PubMed ID: 22902564
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sparseness and Smoothness Regularized Imaging for improving the resolution of Cryo-EM single-particle reconstruction.
    Luo Z; Campos-Acevedo AA; Lv L; Wang Q; Ma J
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33402531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.