These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 33295604)

  • 1. glmGamPoi: fitting Gamma-Poisson generalized linear models on single cell count data.
    Ahlmann-Eltze C; Huber W
    Bioinformatics; 2021 Apr; 36(24):5701-5702. PubMed ID: 33295604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerated dimensionality reduction of single-cell RNA sequencing data with fastglmpca.
    Weine E; Carbonetto P; Stephens M
    Bioinformatics; 2024 Aug; 40(8):. PubMed ID: 39110511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerated dimensionality reduction of single-cell RNA sequencing data with fastglmpca.
    Weine E; Carbonetto P; Stephens M
    bioRxiv; 2024 Jul; ():. PubMed ID: 38585920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beta-Poisson model for single-cell RNA-seq data analyses.
    Vu TN; Wills QF; Kalari KR; Niu N; Wang L; Rantalainen M; Pawitan Y
    Bioinformatics; 2016 Jul; 32(14):2128-35. PubMed ID: 27153638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SCell: integrated analysis of single-cell RNA-seq data.
    Diaz A; Liu SJ; Sandoval C; Pollen A; Nowakowski TJ; Lim DA; Kriegstein A
    Bioinformatics; 2016 Jul; 32(14):2219-20. PubMed ID: 27153637
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scBatch: batch-effect correction of RNA-seq data through sample distance matrix adjustment.
    Fei T; Yu T
    Bioinformatics; 2020 May; 36(10):3115-3123. PubMed ID: 32053185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. schex avoids overplotting for large single-cell RNA-sequencing datasets.
    Freytag S; Lister R
    Bioinformatics; 2020 Apr; 36(7):2291-2292. PubMed ID: 31794001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. flexiMAP: a regression-based method for discovering differential alternative polyadenylation events in standard RNA-seq data.
    Szkop KJ; Moss DS; Nobeli I
    Bioinformatics; 2021 Jun; 37(10):1461-1464. PubMed ID: 33051680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data.
    Tang W; Bertaux F; Thomas P; Stefanelli C; Saint M; Marguerat S; Shahrezaei V
    Bioinformatics; 2020 Feb; 36(4):1174-1181. PubMed ID: 31584606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NewWave: a scalable R/Bioconductor package for the dimensionality reduction and batch effect removal of single-cell RNA-seq data.
    Agostinis F; Romualdi C; Sales G; Risso D
    Bioinformatics; 2022 Apr; 38(9):2648-2650. PubMed ID: 35266509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A flexible count data model to fit the wide diversity of expression profiles arising from extensively replicated RNA-seq experiments.
    Esnaola M; Puig P; Gonzalez D; Castelo R; Gonzalez JR
    BMC Bioinformatics; 2013 Aug; 14():254. PubMed ID: 23965047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DaMiRseq-an R/Bioconductor package for data mining of RNA-Seq data: normalization, feature selection and classification.
    Chiesa M; Colombo GI; Piacentini L
    Bioinformatics; 2018 Apr; 34(8):1416-1418. PubMed ID: 29236969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isoform-level gene expression patterns in single-cell RNA-sequencing data.
    Vu TN; Wills QF; Kalari KR; Niu N; Wang L; Pawitan Y; Rantalainen M
    Bioinformatics; 2018 Jul; 34(14):2392-2400. PubMed ID: 29490015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SPsimSeq: semi-parametric simulation of bulk and single-cell RNA-sequencing data.
    Assefa AT; Vandesompele J; Thas O
    Bioinformatics; 2020 May; 36(10):3276-3278. PubMed ID: 32065619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PrInCE: an R/Bioconductor package for protein-protein interaction network inference from co-fractionation mass spectrometry data.
    Skinnider MA; Cai C; Stacey RG; Foster LJ
    Bioinformatics; 2021 Sep; 37(17):2775-2777. PubMed ID: 33471077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2DImpute: imputation in single-cell RNA-seq data from correlations in two dimensions.
    Zhu K; Anastassiou D
    Bioinformatics; 2020 Jun; 36(11):3588-3589. PubMed ID: 32108864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. propeller: testing for differences in cell type proportions in single cell data.
    Phipson B; Sim CB; Porrello ER; Hewitt AW; Powell J; Oshlack A
    Bioinformatics; 2022 Oct; 38(20):4720-4726. PubMed ID: 36005887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probabilistic count matrix factorization for single cell expression data analysis.
    Durif G; Modolo L; Mold JE; Lambert-Lacroix S; Picard F
    Bioinformatics; 2019 Oct; 35(20):4011-4019. PubMed ID: 30865271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CMF-Impute: an accurate imputation tool for single-cell RNA-seq data.
    Xu J; Cai L; Liao B; Zhu W; Yang J
    Bioinformatics; 2020 May; 36(10):3139-3147. PubMed ID: 32073612
    [TBL] [Abstract][Full Text] [Related]  

  • 20. UMI4Cats: an R package to analyze chromatin contact profiles obtained by UMI-4C.
    Ramos-Rodríguez M; Subirana-Granés M; Pasquali L
    Bioinformatics; 2021 Nov; 37(22):4240-4242. PubMed ID: 34009302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.