These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33295906)

  • 1. New flow control systems in capillarics: off valves.
    Menges J; Meffan C; Dolamore F; Fee C; Dobson R; Nock V
    Lab Chip; 2021 Jan; 21(1):205-214. PubMed ID: 33295906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Capillaric field effect transistors.
    Meffan C; Menges J; Dolamore F; Mak D; Fee C; Dobson RCJ; Nock V
    Microsyst Nanoeng; 2022; 8():33. PubMed ID: 35371537
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Innovative Hydrophobic Valve Allows Complex Liquid Manipulations in a Self-Powered Channel-Based Microfluidic Device.
    Dal Dosso F; Tripodi L; Spasic D; Kokalj T; Lammertyn J
    ACS Sens; 2019 Mar; 4(3):694-703. PubMed ID: 30807106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits.
    Olanrewaju A; Beaugrand M; Yafia M; Juncker D
    Lab Chip; 2018 Aug; 18(16):2323-2347. PubMed ID: 30010168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic on-chip valve and pump for applications in immunoassays.
    Shen H; Li Q; Song W; Jiang X
    Lab Chip; 2023 Jan; 23(2):341-348. PubMed ID: 36602133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capillarics: pre-programmed, self-powered microfluidic circuits built from capillary elements.
    Safavieh R; Juncker D
    Lab Chip; 2013 Nov; 13(21):4180-9. PubMed ID: 23978958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-Line Dual-Active Valves Based Centrifugal Microfluidic Chip for Fully Automated Point-of-Care Immunoassay.
    Qian C; Wan C; Li S; Xiao Y; Yuan H; Gao S; Wu L; Zhou M; Feng X; Li Y; Chen P; Liu BF
    Anal Chem; 2023 Aug; 95(33):12521-12531. PubMed ID: 37556853
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on Functionality and Surface Modification of a Stair-Step Liquid-Triggered Valve for On-Chip Flow Control.
    Chen X; Chen S; Zhang Y; Yang H
    Micromachines (Basel); 2020 Jul; 11(7):. PubMed ID: 32708757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Punch card programmable microfluidics.
    Korir G; Prakash M
    PLoS One; 2015; 10(3):e0115993. PubMed ID: 25738834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 3D Capillary-Driven Multi-Micropore Membrane-Based Trigger Valve for Multi-Step Biochemical Reaction.
    Zhang Y; Li Y; Luan X; Li X; Jiang J; Fan Y; Li M; Huang C; Zhang L; Zhao Y
    Biosensors (Basel); 2022 Dec; 13(1):. PubMed ID: 36671861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dynamics of capillary flow in an open-channel system featuring trigger valves.
    Tokihiro JC; Robertson IH; Gregucci D; Shin A; Michelini E; Nicholson TM; Olanrewaju A; Theberge AB; Berthier J; Berthier E
    bioRxiv; 2024 Nov; ():. PubMed ID: 39345588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microvalves for Applications in Centrifugal Microfluidics.
    Peshin S; Madou M; Kulinsky L
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automated solid phase DNA extraction on a lab-on-a-disc with two-degrees of freedom instrumentation.
    Carthy É; Hughes B; Higgins E; Early P; Merne C; Walsh D; Parle-McDermott A; Kinahan DJ
    Anal Chim Acta; 2023 Nov; 1280():341859. PubMed ID: 37858565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electro-actuated valves and self-vented channels enable programmable flow control and monitoring in capillary-driven microfluidics.
    Arango Y; Temiz Y; Gökçe O; Delamarche E
    Sci Adv; 2020 Apr; 6(16):eaay8305. PubMed ID: 32494605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elastic reversible valves on centrifugal microfluidic platforms.
    Aeinehvand MM; Weber L; Jiménez M; Palermo A; Bauer M; Loeffler FF; Ibrahim F; Breitling F; Korvink J; Madou M; Mager D; Martínez-Chapa SO
    Lab Chip; 2019 Mar; 19(6):1090-1100. PubMed ID: 30785443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Programmable Gravity Self-Driven Microfluidic Chip for Point-of-Care Multiplied Immunoassays.
    Yuan H; Wan C; Wang X; Li S; Xie H; Qian C; Du W; Feng X; Li Y; Chen P; Liu BF
    Small; 2024 May; 20(21):e2310206. PubMed ID: 38085133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Frequency-specific, valveless flow control in insect-mimetic microfluidic devices.
    Chatterjee K; Graybill PM; Socha JJ; Davalos RV; Staples AE
    Bioinspir Biomim; 2021 Mar; 16(3):. PubMed ID: 33561847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An automated optofluidic biosensor platform combining interferometric sensors and injection moulded microfluidics.
    Szydzik C; Gavela AF; Herranz S; Roccisano J; Knoerzer M; Thurgood P; Khoshmanesh K; Mitchell A; Lechuga LM
    Lab Chip; 2017 Aug; 17(16):2793-2804. PubMed ID: 28682395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pneumatic oscillator circuits for timing and control of integrated microfluidics.
    Duncan PN; Nguyen TV; Hui EE
    Proc Natl Acad Sci U S A; 2013 Nov; 110(45):18104-9. PubMed ID: 24145429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Capillary Flow-Driven and Magnetically Actuated Multi-Use Wax Valves for Controlled Sealing and Releasing of Fluids on Centrifugal Microfluidic Platforms.
    Peshin S; George D; Shiri R; Kulinsky L; Madou M
    Micromachines (Basel); 2022 Feb; 13(2):. PubMed ID: 35208427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.