These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 33295914)

  • 1. iDHS-DASTS: identifying DNase I hypersensitive sites based on LASSO and stacking learning.
    Zhang S; Duan Z; Yang W; Qian C; You Y
    Mol Omics; 2021 Feb; 17(1):130-141. PubMed ID: 33295914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iDHS-DSAMS: Identifying DNase I hypersensitive sites based on the dinucleotide property matrix and ensemble bagged tree.
    Zhang S; Yu Q; He H; Zhu F; Wu P; Gu L; Jiang S
    Genomics; 2020 Mar; 112(2):1282-1289. PubMed ID: 31377426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iDHS-Deep: an integrated tool for predicting DNase I hypersensitive sites by deep neural network.
    Dao FY; Lv H; Su W; Sun ZJ; Huang QL; Lin H
    Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33751027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use Chou's 5-steps rule to identify DNase I hypersensitive sites via dinucleotide property matrix and extreme gradient boosting.
    Zhang S; Xue T
    Mol Genet Genomics; 2020 Nov; 295(6):1431-1442. PubMed ID: 32685987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iDHS-DT: Identifying DNase I hypersensitive sites by integrating DNA dinucleotide and trinucleotide information.
    Zou H; Yang F; Yin Z
    Biophys Chem; 2022 Feb; 281():106717. PubMed ID: 34798459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iDHS-DMCAC: identifying DNase I hypersensitive sites with balanced dinucleotide-based detrending moving-average cross-correlation coefficient.
    Liang Y; Zhang S
    SAR QSAR Environ Res; 2019 Jun; 30(6):429-445. PubMed ID: 31117818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iDHS-EL: identifying DNase I hypersensitive sites by fusing three different modes of pseudo nucleotide composition into an ensemble learning framework.
    Liu B; Long R; Chou KC
    Bioinformatics; 2016 Aug; 32(16):2411-8. PubMed ID: 27153623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iDHS-FFLG: Identifying DNase I Hypersensitive Sites by Feature Fusion and Local-Global Feature Extraction Network.
    Wang LS; Sun ZL
    Interdiscip Sci; 2023 Jun; 15(2):155-170. PubMed ID: 36166165
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CEPZ: A Novel Predictor for Identification of DNase I Hypersensitive Sites.
    Zheng Y; Wang H; Ding Y; Guo F
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2768-2774. PubMed ID: 33481716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iDHS-RGME: Identification of DNase I hypersensitive sites by integrating information on nucleotide composition and physicochemical properties.
    Jin J; Feng J
    Biochem Biophys Res Commun; 2024 Nov; 734():150618. PubMed ID: 39222575
    [TBL] [Abstract][Full Text] [Related]  

  • 11. iORI-ENST: identifying origin of replication sites based on elastic net and stacking learning.
    Yao Y; Zhang S; Liang Y
    SAR QSAR Environ Res; 2021 Apr; 32(4):317-331. PubMed ID: 33730950
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pDHS-SVM: A prediction method for plant DNase I hypersensitive sites based on support vector machine.
    Zhang S; Zhou Z; Chen X; Hu Y; Yang L
    J Theor Biol; 2017 Aug; 426():126-133. PubMed ID: 28552554
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of DNase I hypersensitive sites in the human genome by multiple sequence descriptors.
    Jin YT; Tan Y; Gan ZH; Hao YD; Wang TY; Lin H; Tang B
    Methods; 2024 Sep; 229():125-132. PubMed ID: 38964595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LangMoDHS: A deep learning language model for predicting DNase I hypersensitive sites in mouse genome.
    Tang X; Zheng P; Liu Y; Yao Y; Huang G
    Math Biosci Eng; 2023 Jan; 20(1):1037-1057. PubMed ID: 36650801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DHSpred: support-vector-machine-based human DNase I hypersensitive sites prediction using the optimal features selected by random forest.
    Manavalan B; Shin TH; Lee G
    Oncotarget; 2018 Jan; 9(2):1944-1956. PubMed ID: 29416743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNAPred: Accurate Identification of DNA-Binding Sites from Protein Sequence by Ensembled Hyperplane-Distance-Based Support Vector Machines.
    Zhu YH; Hu J; Song XN; Yu DJ
    J Chem Inf Model; 2019 Jun; 59(6):3057-3071. PubMed ID: 30943723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition.
    Chen W; Feng PM; Lin H; Chou KC
    Nucleic Acids Res; 2013 Apr; 41(6):e68. PubMed ID: 23303794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. iRSpot-ADPM: Identify recombination spots by incorporating the associated dinucleotide product model into Chou's pseudo components.
    Zhang L; Kong L
    J Theor Biol; 2018 Mar; 441():1-8. PubMed ID: 29305179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. iR5hmcSC: Identifying RNA 5-hydroxymethylcytosine with multiple features based on stacking learning.
    Zhang S; Shi H
    Comput Biol Chem; 2021 Dec; 95():107583. PubMed ID: 34562726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring sequence-based features for the improved prediction of DNA N4-methylcytosine sites in multiple species.
    Wei L; Luan S; Nagai LAE; Su R; Zou Q
    Bioinformatics; 2019 Apr; 35(8):1326-1333. PubMed ID: 30239627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.