These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 33296168)

  • 1. Achieving High Performances of Ultra-Low Thermal Expansion and High Thermal Conductivity in 0.5PbTiO
    Qiao Y; Xiao N; Song Y; Deng S; Huang R; Li L; Xing X; Chen J
    ACS Appl Mater Interfaces; 2020 Dec; 12(51):57228-57234. PubMed ID: 33296168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Parallel Structure Enhanced Polysilylaryl-enyne/Ca
    Peng H; Huang J; Ren H; Xie T; Deng S; Yao X; Lin H
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45893-45903. PubMed ID: 36191165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics.
    Subramaniam C; Yasuda Y; Takeya S; Ata S; Nishizawa A; Futaba D; Yamada T; Hata K
    Nanoscale; 2014 Mar; 6(5):2669-74. PubMed ID: 24441433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Thermal Conductivity and Anisotropy Values of Aligned Graphite Flakes/Copper Foil Composites.
    Zeng F; Xue C; Ma H; Lin CT; Yu J; Jiang N
    Materials (Basel); 2019 Dec; 13(1):. PubMed ID: 31861814
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RTA-treated carbon fiber/copper core/shell hybrid for thermally conductive composites.
    Yu S; Park BI; Park C; Hong SM; Han TH; Koo CM
    ACS Appl Mater Interfaces; 2014 May; 6(10):7498-503. PubMed ID: 24758290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microstructure and Thermal Conductivity of Carbon Nanotube Reinforced Cu Composites.
    Chen P; Zhang J; Shen Q; Luo G; Dai Y; Wang C; Li M; Zhang L
    J Nanosci Nanotechnol; 2017 Apr; 17(4):2447-452. PubMed ID: 29648750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Zr-Cu Alloy Powder on Microstructure and Properties of Cu Matrix Composite with Highly-Aligned Flake Graphite.
    Chen C; Cui Q; Yu C; Li P; Han W; Hao J
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33327630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon Nanotube/Cu Nanowires/Epoxy Composite Mats with Improved Thermal and Electrical Conductivity.
    Xing Y; Cao W; Li W; Chen H; Wang M; Wei H; Hu D; Chen M; Li Q
    J Nanosci Nanotechnol; 2015 Apr; 15(4):3265-70. PubMed ID: 26353575
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Origin of High Thermal Conductivity and Ultralow Thermal Expansion in Copper-Graphite Composites.
    Firkowska I; Boden A; Boerner B; Reich S
    Nano Lett; 2015 Jul; 15(7):4745-51. PubMed ID: 26083322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ Alloying of Thermally Conductive Polymer Composites by Combining Liquid and Solid Metal Microadditives.
    Ralphs MI; Kemme N; Vartak PB; Joseph E; Tipnis S; Turnage S; Solanki KN; Wang RY; Rykaczewski K
    ACS Appl Mater Interfaces; 2018 Jan; 10(2):2083-2092. PubMed ID: 29235852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of titanium addition on the thermal properties of diamond/cu-ti composites fabricated by pressureless liquid-phase sintering technique.
    Chung CY; Chu CH; Lee MT; Lin CM; Lin SJ
    ScientificWorldJournal; 2014; 2014():713537. PubMed ID: 24715816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Density-tunable lightweight polymer composites with dual-functional ability of efficient EMI shielding and heat dissipation.
    Lee SH; Yu S; Shahzad F; Kim WN; Park C; Hong SM; Koo CM
    Nanoscale; 2017 Sep; 9(36):13432-13440. PubMed ID: 28696464
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal Conductivity of Composite Materials Copper-Fullerene Soot.
    Koltsova T; Bobrynina E; Vozniakovskii A; Larionova T; Klimova-Korsmik O
    Materials (Basel); 2022 Feb; 15(4):. PubMed ID: 35207956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ice-Templated Assembly Strategy to Construct 3D Boron Nitride Nanosheet Networks in Polymer Composites for Thermal Conductivity Improvement.
    Zeng X; Yao Y; Gong Z; Wang F; Sun R; Xu J; Wong CP
    Small; 2015 Dec; 11(46):6205-13. PubMed ID: 26479262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Thermoelectric Properties of Ag-Modified Bi
    Cao S; Huang ZY; Zu FQ; Xu J; Yang L; Chen ZG
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):36478-36482. PubMed ID: 28994277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Significantly Enhanced Dielectric Performances and High Thermal Conductivity in Poly(vinylidene fluoride)-Based Composites Enabled by SiC@SiO
    He D; Wang Y; Song S; Liu S; Deng Y
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44839-44846. PubMed ID: 29207243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal Characteristics of Cu Matrix-SiC Filler Composite Using Nano-Sized Cu Powder.
    Oh BH; Jung CH; Kong H; Lee SJ
    J Nanosci Nanotechnol; 2021 Sep; 21(9):4964-4967. PubMed ID: 33691900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymer Composite with Improved Thermal Conductivity by Constructing a Hierarchically Ordered Three-Dimensional Interconnected Network of BN.
    Hu J; Huang Y; Yao Y; Pan G; Sun J; Zeng X; Sun R; Xu JB; Song B; Wong CP
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13544-13553. PubMed ID: 28362080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper-based conductive composites with tailored thermal expansion.
    Della Gaspera E; Tucker R; Star K; Lan EH; Ju YS; Dunn B
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):10966-74. PubMed ID: 24175870
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal-Conductivity-Enhancing Copper-Plated Expanded Graphite/Paraffin Composite for Highly Stable Phase-Change Materials.
    Yan J; Han X; Dang Z; Li J; He X
    Chemphyschem; 2023 Dec; 24(23):e202300320. PubMed ID: 37743701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.