BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 33296201)

  • 1. A Theoretical Assessment of Spin and Charge States in Binuclear Cobalt-Ruthenium Complexes: Implications for a Creutz-Taube Model Ion Separated by a C
    da Silva AR; de Almeida JS; Rivelino R
    J Phys Chem A; 2020 Dec; 124(51):10826-10837. PubMed ID: 33296201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mixed-valence ruthenium complexes rotating through a conformational Robin-Day continuum.
    Parthey M; Gluyas JB; Fox MA; Low PJ; Kaupp M
    Chemistry; 2014 Jun; 20(23):6895-908. PubMed ID: 24740610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excited State Mixed-Valence Complexes: From the Special Pair to the Creutz-Taube Ion and Beyond.
    Low PJ
    Angew Chem Int Ed Engl; 2023 Apr; 62(15):e202217082. PubMed ID: 36691301
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical determination of the excited states and of g-factors of the Creutz-Taube ion, [(NH3)5-Ru-pyrazine-Ru-(NH3)5]5+.
    Bolvin H
    Inorg Chem; 2007 Jan; 46(2):417-27. PubMed ID: 17279820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, structure and spectral and redox properties of new mixed ligand monomeric and dimeric Ru(II) complexes: predominant formation of the "cis-alpha" diastereoisomer and unusual 3MC emission by dimeric complexes.
    Murali M; Palaniandavar M
    Dalton Trans; 2006 Feb; (5):730-43. PubMed ID: 16429178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Creutz-Taube complex revisited: DFT study of the infrared frequencies.
    Todorova T; Delley B
    Inorg Chem; 2008 Dec; 47(23):11269-77. PubMed ID: 18980374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal-to-Ligand Charge-Transfer Emissions of Ruthenium(II) Pentaammine Complexes with Monodentate Aromatic Acceptor Ligands and Distortion Patterns of their Lowest Energy Triplet Excited States.
    Tsai CN; Mazumder S; Zhang XZ; Schlegel HB; Chen YJ; Endicott JF
    Inorg Chem; 2015 Sep; 54(17):8495-508. PubMed ID: 26302226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal Dependence of Signal Transmission through MolecularQuantum-Dot Cellular Automata (QCA): A Theoretical Studyon Fe, Ru, and Os Mixed-Valence Complexes.
    Tokunaga K
    Materials (Basel); 2010 Aug; 3(8):4277-4290. PubMed ID: 28883329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Excited-State Creutz-Taube Ion.
    Pieslinger GE; Ramírez-Wierzbicki I; Cadranel A
    Angew Chem Int Ed Engl; 2022 Dec; 61(49):e202211747. PubMed ID: 36161441
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Localization or delocalization in the electronic structure of Creutz-Taube-type complexes in aqueous solution.
    Yokogawa D; Sato H; Nakao Y; Sakaki S
    Inorg Chem; 2007 Mar; 46(6):1966-74. PubMed ID: 17298050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binuclear ruthenium complexes of a neutral radical bridging ligand. A new "spin" on mixed valency.
    McKinnon SD; Patrick BO; Lever AB; Hicks RG
    Inorg Chem; 2013 Jul; 52(14):8053-66. PubMed ID: 23789578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Signal transmission through molecular quantum-dot cellular automata: a theoretical study on Creutz-Taube complexes for molecular computing.
    Tokunaga K
    Phys Chem Chem Phys; 2009 Mar; 11(10):1474-83. PubMed ID: 19240923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic structure of linear thiophenolate-bridged heteronuclear complexes [LFeMFeL](n)(+) (M = Cr, Co, Fe; n = 1-3): a combination of kinetic exchange interaction and electron delocalization.
    Chibotaru LF; Girerd JJ; Blondin G; Glaser T; Wieghardt K
    J Am Chem Soc; 2003 Oct; 125(41):12615-30. PubMed ID: 14531706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards a comprehensive model for the electronic and vibrational structure of the Creutz-Taube ion.
    Reimers JR; Wallace BB; Hush NS
    Philos Trans A Math Phys Eng Sci; 2008 Jan; 366(1862):15-31. PubMed ID: 17827129
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective binding, self-assembly and nanopatterning of the Creutz-Taube ion on surfaces.
    Wang Y; Lieberman M; Hang Q; Bernstein G
    Int J Mol Sci; 2009 Feb; 10(2):533-558. PubMed ID: 19333420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New Ru(II) complexes for dual photoreactivity: ligand exchange and (1)O2 generation.
    Knoll JD; Albani BA; Turro C
    Acc Chem Res; 2015 Aug; 48(8):2280-7. PubMed ID: 26186416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density functional study on geometrical features and electronic structures of di-mu-oxo-bridged [Mn2O2(H2O)8]q+ with Mn(II), Mn(III), and Mn(IV).
    Mitani M; Wakamatsu Y; Katsurada T; Yoshioka Y
    J Phys Chem A; 2006 Dec; 110(51):13895-914. PubMed ID: 17181350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mixed valence Creutz-Taube ion analogues incorporating thiacrowns: synthesis, structure, physical properties, and computational studies.
    Adams H; Costa PJ; Newell M; Vickers SJ; Ward MD; Félix V; Thomas JA
    Inorg Chem; 2008 Dec; 47(24):11633-43. PubMed ID: 19012395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploration of mixed-valence chemistry: inventing new analogues of the Creutz-Taube ion.
    Kaim W; Klein A; Glöckle M
    Acc Chem Res; 2000 Nov; 33(11):755-63. PubMed ID: 11087312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mixed valency in ligand-bridged diruthenium frameworks: divergences and perspectives.
    Hazari AS; Indra A; Lahiri GK
    RSC Adv; 2018 Aug; 8(51):28895-28908. PubMed ID: 35547993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.