These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 33296612)

  • 61. Different Error Size During Locomotor Adaptation Affects Transfer to Overground Walking Poststroke.
    Alcântara CC; Charalambous CC; Morton SM; Russo TL; Reisman DS
    Neurorehabil Neural Repair; 2018 Dec; 32(12):1020-1030. PubMed ID: 30409103
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Adaptation mechanism of interlimb coordination in human split-belt treadmill walking through learning of foot contact timing: a robotics study.
    Fujiki S; Aoi S; Funato T; Tomita N; Senda K; Tsuchiya K
    J R Soc Interface; 2015 Sep; 12(110):0542. PubMed ID: 26289658
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Kinematic comparison of split-belt and single-belt treadmill walking and the effects of accommodation.
    Altman AR; Reisman DS; Higginson JS; Davis IS
    Gait Posture; 2012 Feb; 35(2):287-91. PubMed ID: 22015048
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Rapid limb-specific modulation of vestibular contributions to ankle muscle activity during locomotion.
    Forbes PA; Vlutters M; Dakin CJ; van der Kooij H; Blouin JS; Schouten AC
    J Physiol; 2017 Mar; 595(6):2175-2195. PubMed ID: 28008621
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effects of Aging and Task Prioritization on Split-Belt Gait Adaptation.
    Vervoort D; den Otter AR; Buurke TJW; Vuillerme N; Hortobágyi T; Lamoth CJC
    Front Aging Neurosci; 2019; 11():10. PubMed ID: 30760998
    [No Abstract]   [Full Text] [Related]  

  • 66. Impact of altered lower limb proprioception produced by tendon vibration on adaptation to split-belt treadmill walking.
    Layne CS; Chelette AM; Pourmoghaddam A
    Somatosens Mot Res; 2015; 32(1):31-8. PubMed ID: 25162146
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Contributions of spatial and temporal control of step length symmetry in the transfer of locomotor adaptation from a motorized to a non-motorized split-belt treadmill.
    Gregory DL; Sup FC; Choi JT
    R Soc Open Sci; 2021 Feb; 8(2):202084. PubMed ID: 33972880
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Learning the spatial features of a locomotor task is slowed after stroke.
    Tyrell CM; Helm E; Reisman DS
    J Neurophysiol; 2014 Jul; 112(2):480-9. PubMed ID: 24790172
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Plantarflexion moment is a contributor to step length after-effect following walking on a split-belt treadmill in individuals with stroke and healthy individuals.
    Lauzière S; Miéville C; Betschart M; Duclos C; Aissaoui R; Nadeau S
    J Rehabil Med; 2014 Oct; 46(9):849-57. PubMed ID: 25074249
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Split-belt walking adaptation recalibrates sensorimotor estimates of leg speed but not position or force.
    Vazquez A; Statton MA; Busgang SA; Bastian AJ
    J Neurophysiol; 2015 Dec; 114(6):3255-67. PubMed ID: 26424576
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Does dual task placement and duration affect split-belt treadmill adaptation?
    Hinton DC; Conradsson D; Bouyer L; Paquette C
    Gait Posture; 2020 Jan; 75():115-120. PubMed ID: 31675553
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Adaptational and learning processes during human split-belt locomotion: interaction between central mechanisms and afferent input.
    Prokop T; Berger W; Zijlstra W; Dietz V
    Exp Brain Res; 1995; 106(3):449-56. PubMed ID: 8983988
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Concurrent locomotor adaptation and retention to visual and split-belt perturbations.
    Kim SJ; Howsden S; Bartels N; Lee H
    PLoS One; 2022; 17(12):e0279585. PubMed ID: 36584009
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Adaptive Control of Dynamic Balance across the Adult Lifespan.
    Vervoort D; Buurke TJW; Vuillerme N; Hortobágyi T; DEN Otter R; Lamoth CJC
    Med Sci Sports Exerc; 2020 Oct; 52(10):2270-2277. PubMed ID: 32301854
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Practice Structure and Locomotor Learning After Stroke.
    Helm EE; Pohlig RT; Kumar DS; Reisman DS
    J Neurol Phys Ther; 2019 Apr; 43(2):85-93. PubMed ID: 30883495
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Accelerating locomotor savings in learning: compressing four training days to one.
    Day KA; Leech KA; Roemmich RT; Bastian AJ
    J Neurophysiol; 2018 Jun; 119(6):2100-2113. PubMed ID: 29537915
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Asymmetric walking on an incline affects aspects of positive mechanical work asymmetrically.
    Hurt CP; Kuhman DJ; Reed WR; Baumann A; Jiang W; Marsh K
    J Biomech; 2022 May; 136():111083. PubMed ID: 35413513
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Prior experience but not size of error improves motor learning on the split-belt treadmill in young children.
    Patrick SK; Musselman KE; Tajino J; Ou HC; Bastian AJ; Yang JF
    PLoS One; 2014; 9(3):e93349. PubMed ID: 24675816
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Effects of dopaminergic therapy on locomotor adaptation and adaptive learning in persons with Parkinson's disease.
    Roemmich RT; Hack N; Akbar U; Hass CJ
    Behav Brain Res; 2014 Jul; 268():31-9. PubMed ID: 24698798
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Gait in adolescent idiopathic scoliosis: energy cost analysis.
    Mahaudens P; Detrembleur C; Mousny M; Banse X
    Eur Spine J; 2009 Aug; 18(8):1160-8. PubMed ID: 19390877
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.