These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 33296612)

  • 81. Split-belt treadmill training poststroke: a case study.
    Reisman DS; McLean H; Bastian AJ
    J Neurol Phys Ther; 2010 Dec; 34(4):202-7. PubMed ID: 21084921
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Younger is not always better: development of locomotor adaptation from childhood to adulthood.
    Vasudevan EV; Torres-Oviedo G; Morton SM; Yang JF; Bastian AJ
    J Neurosci; 2011 Feb; 31(8):3055-65. PubMed ID: 21414926
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Walking through the looking glass: Adapting gait patterns with mirror feedback.
    Stone AE; Terza MJ; Raffegeau TE; Hass CJ
    J Biomech; 2019 Jan; 83():104-109. PubMed ID: 30503256
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Large Propulsion Demands Increase Locomotor Adaptation at the Expense of Step Length Symmetry.
    Sombric CJ; Calvert JS; Torres-Oviedo G
    Front Physiol; 2019; 10():60. PubMed ID: 30800072
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Real-time feedback control of split-belt ratio to induce targeted step length asymmetry.
    Carr S; Rasouli F; Kim SH; Reed KB
    J Neuroeng Rehabil; 2022 Jun; 19(1):65. PubMed ID: 35773672
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Visuomotor errors drive step length and step time adaptation during 'virtual' split-belt walking: the effects of reinforcement feedback.
    Sato S; Cui A; Choi JT
    Exp Brain Res; 2022 Feb; 240(2):511-523. PubMed ID: 34816293
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Split-Belt Treadmill Training to Improve Gait Adaptation in Parkinson's Disease.
    Hulzinga F; Seuthe J; D'Cruz N; Ginis P; Nieuwboer A; Schlenstedt C
    Mov Disord; 2023 Jan; 38(1):92-103. PubMed ID: 36239376
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A Spinal Mechanism Related to Left-Right Symmetry Reduces Cutaneous Reflex Modulation Independently of Speed During Split-Belt Locomotion.
    Hurteau MF; Frigon A
    J Neurosci; 2018 Nov; 38(48):10314-10328. PubMed ID: 30315129
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Repeated split-belt treadmill training improves poststroke step length asymmetry.
    Reisman DS; McLean H; Keller J; Danks KA; Bastian AJ
    Neurorehabil Neural Repair; 2013 Jun; 27(5):460-8. PubMed ID: 23392918
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Neural correlates of gait adaptation in younger and older adults.
    Fettrow T; Hupfeld K; Hass C; Pasternak O; Seidler R
    Sci Rep; 2023 Mar; 13(1):3842. PubMed ID: 36890163
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Distinct locomotor adaptation between conventional walking and walking with a walker.
    Obata H; Ogawa T; Kaneko N; Ishikawa K; Nakazawa K
    Exp Brain Res; 2024 Aug; 242(8):1861-1870. PubMed ID: 38856929
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Individual Differences in Locomotor Function Predict the Capacity to Reduce Asymmetry and Modify the Energetic Cost of Walking Poststroke.
    Sánchez N; Finley JM
    Neurorehabil Neural Repair; 2018 Aug; 32(8):701-713. PubMed ID: 29998788
    [TBL] [Abstract][Full Text] [Related]  

  • 93. How does the motor system correct for errors in time and space during locomotor adaptation?
    Malone LA; Bastian AJ; Torres-Oviedo G
    J Neurophysiol; 2012 Jul; 108(2):672-83. PubMed ID: 22514294
    [TBL] [Abstract][Full Text] [Related]  

  • 94. A Dual-Learning Paradigm Simultaneously Improves Multiple Features of Gait Post-Stroke.
    Cherry-Allen KM; Statton MA; Celnik PA; Bastian AJ
    Neurorehabil Neural Repair; 2018 Sep; 32(9):810-820. PubMed ID: 30086670
    [TBL] [Abstract][Full Text] [Related]  

  • 95. A mental workload and biomechanical assessment during split-belt locomotor adaptation with and without optic flow.
    Mahon CE; Hendershot BD; Gaskins C; Hatfield BD; Shaw EP; Gentili RJ
    Exp Brain Res; 2023 Jul; 241(7):1945-1958. PubMed ID: 37358569
    [TBL] [Abstract][Full Text] [Related]  

  • 96. The Effect of Split-Belt Treadmill Interventions on Step Length Asymmetry in Individuals Poststroke: A Systematic Review With Meta-Analysis.
    Dzewaltowski AC; Hedrick EA; Leutzinger TJ; Remski LE; Rosen AB
    Neurorehabil Neural Repair; 2021 Jul; 35(7):563-575. PubMed ID: 33978525
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Can a passive unilateral hip exosuit diminish walking asymmetry? A randomized trial.
    Kowalczyk K; Mukherjee M; Malcolm P
    J Neuroeng Rehabil; 2023 Jul; 20(1):88. PubMed ID: 37438846
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Natural ageing primarily affects the initial response to a sustained walking perturbation but not the ability to adapt over time.
    Swart SB; den Otter AR; Lamoth CJC
    Front Physiol; 2023; 14():1065974. PubMed ID: 36909231
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Unilateral step training can drive faster learning of novel gait patterns.
    Song CN; Stenum J; Leech KA; Keller CK; Roemmich RT
    Sci Rep; 2020 Oct; 10(1):18628. PubMed ID: 33122783
    [TBL] [Abstract][Full Text] [Related]  

  • 100. The Split-Belt Walking Paradigm: Exploring Motor Learning and Spatiotemporal Asymmetry Poststroke.
    Helm EE; Reisman DS
    Phys Med Rehabil Clin N Am; 2015 Nov; 26(4):703-13. PubMed ID: 26522907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.