BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 33296617)

  • 1. TRPM3 expression and control of glutamate release from primary vagal afferent neurons.
    Ragozzino FJ; Arnold RA; Fenwick AJ; Riley TP; Lindberg JEM; Peterson B; Peters JH
    J Neurophysiol; 2021 Jan; 125(1):199-210. PubMed ID: 33296617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TRPV1 enhances cholecystokinin signaling in primary vagal afferent neurons and mediates the central effects on spontaneous glutamate release in the NTS.
    Arnold RA; Fowler DK; Peters JH
    Am J Physiol Cell Physiol; 2024 Jan; 326(1):C112-C124. PubMed ID: 38047304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Channeling satiation: a primer on the role of TRP channels in the control of glutamate release from vagal afferent neurons.
    Wu SW; Fenwick AJ; Peters JH
    Physiol Behav; 2014 Sep; 136():179-84. PubMed ID: 25290762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of TRPV1 independent mechanisms of spontaneous and asynchronous glutamate release at primary afferent to NTS synapses.
    Fenwick AJ; Wu SW; Peters JH
    Front Neurosci; 2014; 8():6. PubMed ID: 24550768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct Calcium Sources Support Multiple Modes of Synaptic Release from Cranial Sensory Afferents.
    Fawley JA; Hofmann ME; Andresen MC
    J Neurosci; 2016 Aug; 36(34):8957-66. PubMed ID: 27559176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermally active TRPV1 tonically drives central spontaneous glutamate release.
    Shoudai K; Peters JH; McDougall SJ; Fawley JA; Andresen MC
    J Neurosci; 2010 Oct; 30(43):14470-5. PubMed ID: 20980604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian regulation of glutamate release pathways shapes synaptic throughput in the brainstem nucleus of the solitary tract (NTS).
    Ragozzino FJ; Peterson BA; Karatsoreos IN; Peters JH
    J Physiol; 2023 May; 601(10):1881-1896. PubMed ID: 36975145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic and pharmacological evidence for low-abundance TRPV3 expression in primary vagal afferent neurons.
    Wu SW; Lindberg JE; Peters JH
    Am J Physiol Regul Integr Comp Physiol; 2016 May; 310(9):R794-805. PubMed ID: 26843581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential immunostaining patterns of transient receptor potential (TRP) ion channels in the rat nodose ganglion.
    Jawaid S; Herring AI; Getsy PM; Lewis SJ; Watanabe M; Kolesova H
    J Anat; 2022 Aug; 241(2):230-244. PubMed ID: 35396708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of steroid-sensitive TRPM3 channels potentiates glutamatergic transmission at cerebellar Purkinje neurons from developing rats.
    Zamudio-Bulcock PA; Everett J; Harteneck C; Valenzuela CF
    J Neurochem; 2011 Nov; 119(3):474-85. PubMed ID: 21955047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corticosterone inhibits vagal afferent glutamate release in the nucleus of the solitary tract via retrograde endocannabinoid signaling.
    Ragozzino FJ; Arnold RA; Kowalski CW; Savenkova MI; Karatsoreos IN; Peters JH
    Am J Physiol Cell Physiol; 2020 Dec; 319(6):C1097-C1106. PubMed ID: 32966126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primary afferent activation of thermosensitive TRPV1 triggers asynchronous glutamate release at central neurons.
    Peters JH; McDougall SJ; Fawley JA; Smith SM; Andresen MC
    Neuron; 2010 Mar; 65(5):657-69. PubMed ID: 20223201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cannabinoid 1 and transient receptor potential vanilloid 1 receptors discretely modulate evoked glutamate separately from spontaneous glutamate transmission.
    Fawley JA; Hofmann ME; Andresen MC
    J Neurosci; 2014 Jun; 34(24):8324-32. PubMed ID: 24920635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature differentially facilitates spontaneous but not evoked glutamate release from cranial visceral primary afferents.
    Fawley JA; Hofmann ME; Largent-Milnes TM; Andresen MC
    PLoS One; 2015; 10(5):e0127764. PubMed ID: 25992717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TRPV1 channels contribute to spontaneous glutamate release in nucleus tractus solitarii following chronic intermittent hypoxia.
    Kline DD; Wang S; Kunze DL
    J Neurophysiol; 2019 Mar; 121(3):881-892. PubMed ID: 30601692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dedicated C-fiber vagal sensory afferent pathways to the paraventricular nucleus of the hypothalamus.
    Fawley JA; Hegarty DM; Aicher SA; Beaumont E; Andresen MC
    Brain Res; 2021 Oct; 1769():147625. PubMed ID: 34416255
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 5-HT
    Fawley JA; Doyle MW; Andresen MC
    Brain Res; 2019 Oct; 1721():146346. PubMed ID: 31348913
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hypoxia augments TRPM3-mediated calcium influx in vagal sensory neurons.
    Langen KR; Dantzler HA; de Barcellos-Filho PG; Kline DD
    Auton Neurosci; 2023 Jul; 247():103095. PubMed ID: 37146443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Presynaptic or postsynaptic location of receptors for angiotensin II and substance P in the medial solitary tract nucleus.
    Qu L; McQueeney AJ; Barnes KL
    J Neurophysiol; 1996 Jun; 75(6):2220-8. PubMed ID: 8793736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vanilloid receptor (VR1) expression in vagal afferent neurons innervating the gastrointestinal tract.
    Patterson LM; Zheng H; Ward SM; Berthoud HR
    Cell Tissue Res; 2003 Mar; 311(3):277-87. PubMed ID: 12658436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.