These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
707 related articles for article (PubMed ID: 33296677)
1. The ZATT-TOP2A-PICH Axis Drives Extensive Replication Fork Reversal to Promote Genome Stability. Tian T; Bu M; Chen X; Ding L; Yang Y; Han J; Feng XH; Xu P; Liu T; Ying S; Lei Y; Li Q; Huang J Mol Cell; 2021 Jan; 81(1):198-211.e6. PubMed ID: 33296677 [TBL] [Abstract][Full Text] [Related]
2. RNF4 controls the extent of replication fork reversal to preserve genome stability. Ding L; Luo Y; Tian T; Chen X; Yang Y; Bu M; Han J; Yang B; Yan H; Liu T; Wu M; Zhang G; Xu Y; Zhu S; Huen MSY; Mao G; Huang J Nucleic Acids Res; 2022 Jun; 50(10):5672-5687. PubMed ID: 35640614 [TBL] [Abstract][Full Text] [Related]
3. Restoration of Replication Fork Stability in BRCA1- and BRCA2-Deficient Cells by Inactivation of SNF2-Family Fork Remodelers. Taglialatela A; Alvarez S; Leuzzi G; Sannino V; Ranjha L; Huang JW; Madubata C; Anand R; Levy B; Rabadan R; Cejka P; Costanzo V; Ciccia A Mol Cell; 2017 Oct; 68(2):414-430.e8. PubMed ID: 29053959 [TBL] [Abstract][Full Text] [Related]
4. Time for remodeling: SNF2-family DNA translocases in replication fork metabolism and human disease. Joseph SA; Taglialatela A; Leuzzi G; Huang JW; Cuella-Martin R; Ciccia A DNA Repair (Amst); 2020 Nov; 95():102943. PubMed ID: 32971328 [TBL] [Abstract][Full Text] [Related]
5. Cockayne syndrome group B protein regulates fork restart, fork progression and MRE11-dependent fork degradation in BRCA1/2-deficient cells. Batenburg NL; Mersaoui SY; Walker JR; Coulombe Y; Hammond-Martel I; Wurtele H; Masson JY; Zhu XD Nucleic Acids Res; 2021 Dec; 49(22):12836-12854. PubMed ID: 34871413 [TBL] [Abstract][Full Text] [Related]
6. The HIRAN domain of helicase-like transcription factor positions the DNA translocase motor to drive efficient DNA fork regression. Chavez DA; Greer BH; Eichman BF J Biol Chem; 2018 Jun; 293(22):8484-8494. PubMed ID: 29643183 [TBL] [Abstract][Full Text] [Related]
7. Functions of SMARCAL1, ZRANB3, and HLTF in maintaining genome stability. Poole LA; Cortez D Crit Rev Biochem Mol Biol; 2017 Dec; 52(6):696-714. PubMed ID: 28954549 [TBL] [Abstract][Full Text] [Related]
8. Strand annealing and motor driven activities of SMARCAL1 and ZRANB3 are stimulated by RAD51 and the paralog complex. Halder S; Ranjha L; Taglialatela A; Ciccia A; Cejka P Nucleic Acids Res; 2022 Aug; 50(14):8008-8022. PubMed ID: 35801922 [TBL] [Abstract][Full Text] [Related]
9. RADX prevents genome instability by confining replication fork reversal to stalled forks. Krishnamoorthy A; Jackson J; Mohamed T; Adolph M; Vindigni A; Cortez D Mol Cell; 2021 Jul; 81(14):3007-3017.e5. PubMed ID: 34107305 [TBL] [Abstract][Full Text] [Related]
10. BAF complexes facilitate decatenation of DNA by topoisomerase IIα. Dykhuizen EC; Hargreaves DC; Miller EL; Cui K; Korshunov A; Kool M; Pfister S; Cho YJ; Zhao K; Crabtree GR Nature; 2013 May; 497(7451):624-7. PubMed ID: 23698369 [TBL] [Abstract][Full Text] [Related]
11. RFWD3 promotes ZRANB3 recruitment to regulate the remodeling of stalled replication forks. Moore CE; Yalcindag SE; Czeladko H; Ravindranathan R; Wijesekara Hanthi Y; Levy JC; Sannino V; Schindler D; Ciccia A; Costanzo V; Elia AEH J Cell Biol; 2023 May; 222(5):. PubMed ID: 37036693 [TBL] [Abstract][Full Text] [Related]
12. CSB and SMARCAL1 compete for RPA32 at stalled forks and differentially control the fate of stalled forks in BRCA2-deficient cells. Batenburg NL; Sowa DJ; Walker JR; Andres SN; Zhu XD Nucleic Acids Res; 2024 May; 52(9):5067-5087. PubMed ID: 38416570 [TBL] [Abstract][Full Text] [Related]
13. Mechanisms and regulation of replication fork reversal. Adolph MB; Cortez D DNA Repair (Amst); 2024 Sep; 141():103731. PubMed ID: 39089193 [TBL] [Abstract][Full Text] [Related]
14. Substrate-selective repair and restart of replication forks by DNA translocases. Bétous R; Couch FB; Mason AC; Eichman BF; Manosas M; Cortez D Cell Rep; 2013 Jun; 3(6):1958-69. PubMed ID: 23746452 [TBL] [Abstract][Full Text] [Related]
15. Mycobacterium tuberculosis RecG protein but not RuvAB or RecA protein is efficient at remodeling the stalled replication forks: implications for multiple mechanisms of replication restart in mycobacteria. Thakur RS; Basavaraju S; Khanduja JS; Muniyappa K; Nagaraju G J Biol Chem; 2015 Oct; 290(40):24119-39. PubMed ID: 26276393 [TBL] [Abstract][Full Text] [Related]
16. Strand dependent bypass of DNA lesions during fork reversal by ATP-dependent translocases SMARCAL1, ZRANB3, and HLTF. Adolph MB; Warren GM; Couch FB; Greer BH; Eichman BF; Cortez D bioRxiv; 2024 Sep; ():. PubMed ID: 39345618 [TBL] [Abstract][Full Text] [Related]
17. Smarcal1-Mediated Fork Reversal Triggers Mre11-Dependent Degradation of Nascent DNA in the Absence of Brca2 and Stable Rad51 Nucleofilaments. Kolinjivadi AM; Sannino V; De Antoni A; Zadorozhny K; Kilkenny M; Técher H; Baldi G; Shen R; Ciccia A; Pellegrini L; Krejci L; Costanzo V Mol Cell; 2017 Sep; 67(5):867-881.e7. PubMed ID: 28757209 [TBL] [Abstract][Full Text] [Related]