These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 33296758)
1. Hydrothermal treatment of arsenic sulfide slag to immobilize arsenic into scorodite and recycle sulfur. Zhang W; Lu H; Liu F; Wang C; Zhang Z; Zhang J J Hazard Mater; 2021 Mar; 406():124735. PubMed ID: 33296758 [TBL] [Abstract][Full Text] [Related]
2. Immobilizing arsenic-enriched wastewater from utilization of crude antimony oxides as scorodite using a novel multivalent iron source. Tang Z; Tang X; Liu H; Xiao Z Chemosphere; 2023 Oct; 339():139751. PubMed ID: 37557998 [TBL] [Abstract][Full Text] [Related]
3. Utilization of Lead Slag as In Situ Iron Source for Arsenic Removal by Forming Iron Arsenate. Chen P; Zhao Y; Yao J; Zhu J; Cao J Materials (Basel); 2022 Oct; 15(21):. PubMed ID: 36363065 [TBL] [Abstract][Full Text] [Related]
4. Biogenic scorodite crystallization by Acidianus sulfidivorans for arsenic removal. Gonzalez-Contreras P; Weijma J; van der Weijden R; Buisman CJ Environ Sci Technol; 2010 Jan; 44(2):675-80. PubMed ID: 20017476 [TBL] [Abstract][Full Text] [Related]
5. Stabilization mechanism of arsenic-sulfide slag by density functional theory calculation of arsenic-sulfide clusters. Liu F; Xu Q; Liang H; Wang H; Zhong C; Min X; Zhang L J Hazard Mater; 2021 May; 410():124567. PubMed ID: 33234395 [TBL] [Abstract][Full Text] [Related]
6. Removal of arsenic in acidic wastewater using Lead-Zinc smelting slag: From waste solid to As-stabilized mineral. Li Y; Qi X; Li G; Duan X; Yang N Chemosphere; 2022 Aug; 301():134736. PubMed ID: 35500627 [TBL] [Abstract][Full Text] [Related]
7. The effect of precursor speciation on the growth of scorodite in an atmospheric scorodite synthesis. Rong Z; Tang X; Wu L; Chen X; Dang W; Li X; Huang L; Wang Y R Soc Open Sci; 2020 Jan; 7(1):191619. PubMed ID: 32218981 [TBL] [Abstract][Full Text] [Related]
8. Effect of iron reduction by enolic hydroxyl groups on the stability of scorodite in hydrometallurgical industries and arsenic mobilization. Yuan Z; Wang S; Ma X; Wang X; Zhang G; Jia Y; Zheng W Environ Sci Pollut Res Int; 2017 Dec; 24(34):26534-26544. PubMed ID: 28948427 [TBL] [Abstract][Full Text] [Related]
9. Thiosulfate driving bio-reduction mechanisms of scorodite in groundwater environment. Yang Y; Xie Z; Wang J; Chen M Chemosphere; 2023 Jan; 311(Pt 1):136956. PubMed ID: 36280119 [TBL] [Abstract][Full Text] [Related]
10. Effects of Fe(II)-induced transformation of scorodite on arsenic solubility. Zhou J; Liu Y; Bu H; Liu P; Sun J; Wu F; Hua J; Liu C J Hazard Mater; 2022 May; 429():128274. PubMed ID: 35066222 [TBL] [Abstract][Full Text] [Related]
11. Insight into mineralizer modified and tailored scorodite crystal characteristics and leachability for arsenic-rich smelter wastewater stabilization. Sun Y; Yao Q; Zhang X; Yang H; Li N; Zhang Z; Hao Z RSC Adv; 2018 May; 8(35):19560-19569. PubMed ID: 35540995 [TBL] [Abstract][Full Text] [Related]
12. The effect of copper on the precipitation of scorodite (FeAsO4·2H2O) under hydrothermal conditions: evidence for a hydrated copper containing ferric arsenate sulfate-short lived intermediate. Gomez MA; Becze L; Celikin M; Demopoulos GP J Colloid Interface Sci; 2011 Aug; 360(2):508-18. PubMed ID: 21621789 [TBL] [Abstract][Full Text] [Related]
13. Partitioning and transformation behavior of arsenic during Fe(III)-As(III)-As(V)-SO Ma X; Zhang J; Gomez MA; Ding Y; Yao S; Lv H; Wang X; Wang S; Jia Y Sci Total Environ; 2021 Dec; 799():149474. PubMed ID: 34426338 [TBL] [Abstract][Full Text] [Related]
14. Minimization and stabilization of smelting arsenic-containing hazardous wastewater and solid waste using strategy for stepwise phase-controlled and thermal-doped copper slags. Zhang X; Sun Y; Ma Y; Ji W; Ren Y Environ Sci Pollut Res Int; 2021 May; 28(17):21159-21173. PubMed ID: 33405145 [TBL] [Abstract][Full Text] [Related]
15. Alternative Method for the Treatment of Hydrometallurgical Arsenic-Calcium Residues: The Immobilization of Arsenic as Scorodite. Ma X; Yuan Z; Zhang G; Zhang J; Wang X; Wang S; Jia Y ACS Omega; 2020 Jun; 5(22):12979-12988. PubMed ID: 32548482 [TBL] [Abstract][Full Text] [Related]
16. Red mud regulates arsenic fate at acidic pH via regulating arsenopyrite bio-oxidation and S, Fe, Al, Si speciation transformation. Zhang DR; Chen HR; Xia JL; Nie ZY; Zhang RY; Schippers A; Shu WS; Qian LX Water Res; 2021 Sep; 203():117539. PubMed ID: 34407485 [TBL] [Abstract][Full Text] [Related]
17. Speciation characterization of arsenic-bearing phase in arsenic sulfide sludge and the sequential leaching mechanisms. Xu S; Dai S; Shen Y; Yu T; Zhang H; Cao H; Zheng G J Hazard Mater; 2022 Feb; 423(Pt A):127035. PubMed ID: 34474362 [TBL] [Abstract][Full Text] [Related]
18. Mechanism and thermodynamics of scorodite formation by oxidative precipitation from arsenic-bearing solution. Tang Z; Tang X; Xiao Z; Liu H Environ Res; 2024 Jun; 250():118500. PubMed ID: 38387492 [TBL] [Abstract][Full Text] [Related]
19. Disposal of high-arsenic waste acid by the stepwise formation of gypsum and scorodite. Qi X; Li Y; Wei L; Hao F; Zhu X; Wei Y; Li K; Wang H RSC Adv; 2019 Dec; 10(1):29-42. PubMed ID: 35492560 [TBL] [Abstract][Full Text] [Related]
20. Arsenic mineralogy and mobility in the arsenic-rich historical mine waste dump. Filippi M; Drahota P; Machovič V; Böhmová V; Mihaljevič M Sci Total Environ; 2015 Dec; 536():713-728. PubMed ID: 26254072 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]