These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 33296879)

  • 1. Theoretical analysis of thermal boundary conductance of MoS
    Ong ZY; Cai Y; Zhang G; Zhang YW
    Nanotechnology; 2020 Dec; ():. PubMed ID: 33296879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical analysis of thermal boundary conductance of MoS
    Ong ZY; Cai Y; Zhang G; Zhang YW
    Nanotechnology; 2021 Jan; 32(13):135402. PubMed ID: 33410419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of Interfacial Electronic Properties on Phonon Transport in Two-Dimensional MoS
    Yan Z; Chen L; Yoon M; Kumar S
    ACS Appl Mater Interfaces; 2016 Dec; 8(48):33299-33306. PubMed ID: 27934181
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal boundary conductance of monolayer beyond-graphene two-dimensional materials on SiO
    Foss C; Aksamija Z
    Nanotechnology; 2021 Jul; 32(40):. PubMed ID: 34157692
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong interfacial interactions induced a large reduction in lateral thermal conductivity of transition-metal dichalcogenide superlattices.
    Zhang W; Yang JY; Liu L
    RSC Adv; 2019 Jan; 9(3):1387-1393. PubMed ID: 35518039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial Mapping of Thermal Boundary Conductance at Metal-Molybdenum Diselenide Interfaces.
    Brown DB; Shen W; Li X; Xiao K; Geohegan DB; Kumar S
    ACS Appl Mater Interfaces; 2019 Apr; 11(15):14418-14426. PubMed ID: 30896146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-Dependent Thermal Boundary Conductance of Monolayer MoS
    Yalon E; Aslan B; Smithe KKH; McClellan CJ; Suryavanshi SV; Xiong F; Sood A; Neumann CM; Xu X; Goodson KE; Heinz TF; Pop E
    ACS Appl Mater Interfaces; 2017 Dec; 9(49):43013-43020. PubMed ID: 29053241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultra-High Interfacial Thermal Conductance via Double hBN Encapsulation for Efficient Thermal Management of 2D Electronics.
    Ye F; Liu Q; Xu B; Feng PX; Zhang X
    Small; 2023 Mar; 19(12):e2205726. PubMed ID: 36748291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonequilibrium Phonon Thermal Resistance at MoS
    Zheng W; McClellan CJ; Pop E; Koh YK
    ACS Appl Mater Interfaces; 2022 May; 14(19):22372-22380. PubMed ID: 35506655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulated Thermal Boundary Conductance between Copper and Diamond through Nanoscale Interfacial Rough Structures.
    Wang Z; Sun F; Liu Z; Zheng L; Wang D; Feng Y
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):16162-16176. PubMed ID: 36924078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of the electron-phonon coupling in tuning the thermal boundary conductance at metal-dielectric interfaces by inserting ultrathin metal interlayers.
    Oommen SM; Pisana S
    J Phys Condens Matter; 2021 Feb; 33(8):085702. PubMed ID: 33207329
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Achieving Huge Thermal Conductance of Metallic Nitride on Graphene Through Enhanced Elastic and Inelastic Phonon Transmission.
    Zheng W; Huang B; Li H; Koh YK
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):35487-35494. PubMed ID: 30226044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal Conductance of the 2D MoS
    Liu Y; Ong ZY; Wu J; Zhao Y; Watanabe K; Taniguchi T; Chi D; Zhang G; Thong JT; Qiu CW; Hippalgaonkar K
    Sci Rep; 2017 Mar; 7():43886. PubMed ID: 28262778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atomic-Scale Surface Engineering for Giant Thermal Transport Enhancement Across 2D/3D van der Waals Interfaces.
    Wang Q; Zhang J; Xiong Y; Li S; Chernysh V; Liu X
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3377-3386. PubMed ID: 36608269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal Transport across Metal/β-Ga
    Shi J; Yuan C; Huang HL; Johnson J; Chae C; Wang S; Hanus R; Kim S; Cheng Z; Hwang J; Graham S
    ACS Appl Mater Interfaces; 2021 Jun; 13(24):29083-29091. PubMed ID: 34109790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal Boundary Conductance Across Heteroepitaxial ZnO/GaN Interfaces: Assessment of the Phonon Gas Model.
    Gaskins JT; Kotsonis G; Giri A; Ju S; Rohskopf A; Wang Y; Bai T; Sachet E; Shelton CT; Liu Z; Cheng Z; Foley BM; Graham S; Luo T; Henry A; Goorsky MS; Shiomi J; Maria JP; Hopkins PE
    Nano Lett; 2018 Dec; 18(12):7469-7477. PubMed ID: 30412411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial Defect Vibrations Enhance Thermal Transport in Amorphous Multilayers with Ultrahigh Thermal Boundary Conductance.
    Giri A; King SW; Lanford WA; Mei AB; Merrill D; Li L; Oviedo R; Richards J; Olson DH; Braun JL; Gaskins JT; Deangelis F; Henry A; Hopkins PE
    Adv Mater; 2018 Nov; 30(44):e1804097. PubMed ID: 30222218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study of interfacial thermal conductance between metal and semiconductor.
    Wu K; Zhang L; Wang D; Li F; Zhang P; Sang L; Liao M; Tang K; Ye J; Gu S
    Sci Rep; 2022 Nov; 12(1):19907. PubMed ID: 36402811
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phonon transport at the interfaces of vertically stacked graphene and hexagonal boron nitride heterostructures.
    Yan Z; Chen L; Yoon M; Kumar S
    Nanoscale; 2016 Feb; 8(7):4037-46. PubMed ID: 26817419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing Anisotropic Thermal Conductivity of Transition Metal Dichalcogenides MX
    Jiang P; Qian X; Gu X; Yang R
    Adv Mater; 2017 Sep; 29(36):. PubMed ID: 28727182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.