BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 33297089)

  • 1. Bamboo derived hydrochar microspheres fabricated by acid-assisted hydrothermal carbonization.
    Zhang S; Sheng K; Yan W; Liu J; Shuang E; Yang M; Zhang X
    Chemosphere; 2021 Jan; 263():128093. PubMed ID: 33297089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal hydrolysis prior to hydrothermal carbonization resulted in high quality sludge hydrochar with low nitrogen and sulfur content.
    Liu X; Yuan S; Dai X
    Waste Manag; 2024 Mar; 176():117-127. PubMed ID: 38277809
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrolysis and carbonization of reactive dyes/cotton fiber in hydrothermal environment.
    Shi S; Feng X; Gao L; Tang J; Guo H; Wang S
    Waste Manag; 2020 Feb; 103():370-377. PubMed ID: 31927327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrothermal co-carbonization of sewage sludge and pinewood sawdust for nutrient-rich hydrochar production: Synergistic effects and products characterization.
    Zhang X; Zhang L; Li A
    J Environ Manage; 2017 Oct; 201():52-62. PubMed ID: 28645066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fuel properties and combustion kinetics of hydrochar prepared by hydrothermal carbonization of bamboo.
    Yang W; Wang H; Zhang M; Zhu J; Zhou J; Wu S
    Bioresour Technol; 2016 Apr; 205():199-204. PubMed ID: 26826960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon-rich and low-ash hydrochar formation from sewage sludge by alkali-thermal hydrolysis coupled with acid-assisted hydrothermal carbonization.
    Wang L; Yin G; Chang Y; Qiao S
    Waste Manag; 2024 Apr; 177():182-195. PubMed ID: 38330514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Persulfate assisted hydrothermal processing of spirulina for enhanced deoxidation carbonization.
    Wang T; Liu X; Wang D; Gong Z; Si B; Zhai Y
    Bioresour Technol; 2021 Feb; 322():124543. PubMed ID: 33348116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Co-hydrothermal carbonization of food waste-woody sawdust blend: Interaction effects on the hydrochar properties and nutrients characteristics.
    Wang T; Si B; Gong Z; Zhai Y; Cao M; Peng C
    Bioresour Technol; 2020 Nov; 316():123900. PubMed ID: 32739578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study on fuel characteristics and pyrolysis kinetics of corn residue-based hydrochar produced via microwave hydrothermal carbonization.
    Zhang T; Kang K; Nanda S; Dalai AK; Xie T; Zhao Y
    Chemosphere; 2022 Mar; 291(Pt 2):132787. PubMed ID: 34742757
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of co-hydrothermal carbonization on polyvinyl chloride wastes with bamboo.
    Yao Z; Ma X
    Bioresour Technol; 2018 Jan; 247():302-309. PubMed ID: 28950139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of hydrochar with high adsorption performance for methylene blue by co-hydrothermal carbonization of polyvinyl chloride and bamboo.
    Li HZ; Zhang YN; Guo JZ; Lv JQ; Huan WW; Li B
    Bioresour Technol; 2021 Oct; 337():125442. PubMed ID: 34175769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides.
    Sevilla M; Fuertes AB
    Chemistry; 2009; 15(16):4195-203. PubMed ID: 19248078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-pot synthesis and characterization of engineered hydrochar by hydrothermal carbonization of biomass with ZnCl
    Li F; Zimmerman AR; Hu X; Yu Z; Huang J; Gao B
    Chemosphere; 2020 Sep; 254():126866. PubMed ID: 32348923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of temperature on the sulfur fate during hydrothermal carbonization of sewage sludge.
    Wang Z; Zhai Y; Wang T; Peng C; Li S; Wang B; Liu X; Li C
    Environ Pollut; 2020 May; 260():114067. PubMed ID: 32014751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opal promotes hydrothermal carbonization of hydroxypropyl methyl cellulose and formation of carbon nanospheres.
    Xu Y; Xia M; Jiang Y; Li F; Xue B
    RSC Adv; 2018 May; 8(36):20095-20107. PubMed ID: 35541692
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of hydrolysis and carbonization reactions on hydrochar production.
    Fakkaew K; Koottatep T; Polprasert C
    Bioresour Technol; 2015 Sep; 192():328-34. PubMed ID: 26051497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen distribution and evolution during persulfate assisted hydrothermal carbonization of spirulina.
    Zhang Z; Yang J; Li L; Qian J; Zhao Y; Wang T
    Bioresour Technol; 2021 Dec; 342():125980. PubMed ID: 34583113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyrolysis behaviors and thermodynamics properties of hydrochar from bamboo (Phyllostachys heterocycla cv. pubescens) shoot shell.
    Guo S; Dong X; Zhu C; Han Y; Ma F; Wu T
    Bioresour Technol; 2017 Jun; 233():92-98. PubMed ID: 28260666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Speciation and transformation of nitrogen for sewage sludge hydrothermal carbonization-influence of temperature and carbonization time.
    Chen Y; Tian L; Liu T; Liu Z; Huang Z; Yang H; Tian L; Huang Q; Li W; Gao Y; Zhang Z
    Waste Manag; 2023 May; 162():8-17. PubMed ID: 36917884
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upgradation of chemical, fuel, thermal, and structural properties of rice husk through microwave-assisted hydrothermal carbonization.
    Nizamuddin S; Siddiqui MTH; Baloch HA; Mubarak NM; Griffin G; Madapusi S; Tanksale A
    Environ Sci Pollut Res Int; 2018 Jun; 25(18):17529-17539. PubMed ID: 29663294
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.