BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 33297094)

  • 21. Enrichment and isolation of acid-tolerant sulfate-reducing microorganisms in the anoxic, acidic hot spring sediments from Copahue volcano, Argentina.
    Willis G; Nancucheo I; Hedrich S; Giaveno A; Donati E; Johnson DB
    FEMS Microbiol Ecol; 2019 Dec; 95(12):. PubMed ID: 31665270
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bacterial oxidation of ferrous iron at low temperatures.
    Kupka D; Rzhepishevska OI; Dopson M; Lindström EB; Karnachuk OV; Tuovinen OH
    Biotechnol Bioeng; 2007 Aug; 97(6):1470-8. PubMed ID: 17304566
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Acidithiobacillus ferrooxidans.
    Quatrini R; Johnson DB
    Trends Microbiol; 2019 Mar; 27(3):282-283. PubMed ID: 30563727
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mineral weathering of iron ore tailings primed by Acidithiobacillus ferrooxidans and elemental sulfur under contrasting pH conditions.
    Yi Q; Wu S; Liu Y; Chan TS; Lu YR; Saha N; Southam G; Huang L
    Sci Total Environ; 2023 Jan; 856(Pt 1):159078. PubMed ID: 36179848
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heavy metal bioleaching and sludge stabilization in a single-stage reactor using indigenous acidophilic heterotrophs.
    Mehrotra A; Sreekrishnan TR
    Environ Technol; 2017 Nov; 38(21):2709-2724. PubMed ID: 28043205
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Indirect Redox Transformations of Iron, Copper, and Chromium Catalyzed by Extremely Acidophilic Bacteria.
    Johnson DB; Hedrich S; Pakostova E
    Front Microbiol; 2017; 8():211. PubMed ID: 28239375
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sorption of ferrous and ferric iron by extracellular polymeric substances (EPS) from acidophilic bacteria.
    Tapia JM; Muñoz J; González F; Blázquez ML; Ballester A
    Prep Biochem Biotechnol; 2013; 43(8):815-27. PubMed ID: 23876140
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Addition of citrate to Acidithiobacillus ferrooxidans cultures enables precipitate-free growth at elevated pH and reduces ferric inhibition.
    Li X; Mercado R; Kernan T; West AC; Banta S
    Biotechnol Bioeng; 2014 Oct; 111(10):1940-8. PubMed ID: 24771134
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Low molecular weight carboxylic acids in oxidizing porphyry copper tailings.
    Dold B; Blowes DW; Dickhout R; Spangenberg JE; Pfeifer HR
    Environ Sci Technol; 2005 Apr; 39(8):2515-21. PubMed ID: 15884343
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of ferric ions on the anaerobic bio-dissolution of jarosites by Acidithiobacillus ferrooxidans.
    Yang Y; Chen S; Wang B; Wen X; Li H; Zeng RJ
    Sci Total Environ; 2020 Mar; 710():136334. PubMed ID: 32050370
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simulated acid mine drainage treatment in iron oxidizing ceramic membrane bioreactor with subsequent co-precipitation of iron and arsenic.
    Demir EK; Yaman BN; Çelik PA; Puhakka JA; Sahinkaya E
    Water Res; 2021 Aug; 201():117297. PubMed ID: 34118649
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Arsenic(III) biotransformation to tooeleite associated with the oxidation of Fe(II) via Acidithiobacillus ferrooxidans.
    Wang X; Li Q; Liao Q; Yan Y; Xia J; Lin Q; Wang Q; Liang Y
    Chemosphere; 2020 Jun; 248():126080. PubMed ID: 32032883
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Correlation Between Fe/S/As Speciation Transformation and Depth Distribution of
    Zhou YH; Wang C; Liu HC; Xue Z; Nie ZY; Liu Y; Wan JL; Yang Y; Shu WS; Xia JL
    Front Microbiol; 2021; 12():819804. PubMed ID: 35222314
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Aerobic and anaerobic oxidation of hydrogen by acidophilic bacteria.
    Hedrich S; Johnson DB
    FEMS Microbiol Lett; 2013 Dec; 349(1):40-5. PubMed ID: 24117601
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Generation of acid mine drainage around the Karaerik copper mine (Espiye, Giresun, NE Turkey): implications from the bacterial population in the Acısu effluent.
    Sağlam ES; Akçay M; Çolak DN; İnan Bektaş K; Beldüz AO
    Extremophiles; 2016 Sep; 20(5):673-85. PubMed ID: 27338270
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Extremophile microbiomes in acidic and hypersaline river sediments of Western Australia.
    Lu S; Peiffer S; Lazar CS; Oldham C; Neu TR; Ciobota V; Näb O; Lillicrap A; Rösch P; Popp J; Küsel K
    Environ Microbiol Rep; 2016 Feb; 8(1):58-67. PubMed ID: 26524974
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Assessment of the induced effect of selected iron hydroxysulfates biosynthesized using Acidithiobacillus ferrooxidans for biomineralization of acid mine drainage.
    Wang H; Guo Q; Guo Z; Luo H; Li H; Yang J; Song Y
    Water Sci Technol; 2023 Apr; 87(8):1879-1892. PubMed ID: 37119161
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Seasonal blooms of neutrophilic Betaproteobacterial Fe(II) oxidizers and Chlorobi in iron-rich coal mine drainage sediments.
    Blackwell N; Perkins W; Palumbo-Roe B; Bearcock J; Lloyd JR; Edwards A
    FEMS Microbiol Ecol; 2019 Oct; 95(10):. PubMed ID: 31504446
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacterial formation of tooeleite and mixed arsenic(III) or arsenic(V)-iron(III) gels in the Carnoulès acid mine drainage, France. A XANES, XRD, and SEM study.
    Morin G; Juillot F; Casiot C; Bruneel O; Personné JC; Elbaz-Poulichet F; Leblanc M; Ildefonse P; Calas G
    Environ Sci Technol; 2003 May; 37(9):1705-12. PubMed ID: 12775038
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contribution of Microaerophilic Iron(II)-Oxidizers to Iron(III) Mineral Formation.
    Maisch M; Lueder U; Laufer K; Scholze C; Kappler A; Schmidt C
    Environ Sci Technol; 2019 Jul; 53(14):8197-8204. PubMed ID: 31203607
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.