These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 33297220)

  • 21. Can multitrophic interactions and ocean warming influence large-scale kelp recovery?
    Christie H; Gundersen H; Rinde E; Filbee-Dexter K; Norderhaug KM; Pedersen T; Bekkby T; Gitmark JK; Fagerli CW
    Ecol Evol; 2019 Mar; 9(5):2847-2862. PubMed ID: 30891221
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experiments reveal limited top-down control of key herbivores in southern California kelp forests.
    Dunn RP; Hovel KA
    Ecology; 2019 Mar; 100(3):e02625. PubMed ID: 30648729
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Indirect food web interactions: sea otters and kelp forest fishes in the Aleutian archipelago.
    Reisewitz SE; Estes JA; Simenstad CA
    Oecologia; 2006 Jan; 146(4):623-31. PubMed ID: 16193296
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Increased macroalgal abundance following mass mortalities of sea urchins (Strongylocentrotus droebachiensis) along the Atlantic coast of Nova Scotia.
    Scheibling R
    Oecologia; 1986 Jan; 68(2):186-198. PubMed ID: 28310126
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kelp and sea urchin settlement mediated by biotic interactions with benthic coralline algal species.
    Twist BA; Mazel F; Zaklan Duff S; Lemay MA; Pearce CM; Martone PT
    J Phycol; 2024 Apr; 60(2):363-379. PubMed ID: 38147464
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Artificial light at night and warming impact grazing rates and gonad index of the sea urchin
    Caley A; Marzinelli EM; Byrne M; Mayer-Pinto M
    Proc Biol Sci; 2024 Apr; 291(2021):20240415. PubMed ID: 38628122
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens.
    Rogers-Bennett L; Catton CA
    Sci Rep; 2019 Oct; 9(1):15050. PubMed ID: 31636286
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of Rock Type and Food Availability on Bioerosion by the Purple Sea Urchin, Strongylocentrotus purpuratus.
    Troha LU; Narvaez CA; Russell MP
    Integr Comp Biol; 2024 Jun; ():. PubMed ID: 38830805
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbon export is facilitated by sea urchins transforming kelp detritus.
    Filbee-Dexter K; Pedersen MF; Fredriksen S; Norderhaug KM; Rinde E; Kristiansen T; Albretsen J; Wernberg T
    Oecologia; 2020 Jan; 192(1):213-225. PubMed ID: 31828530
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Climate-driven disparities among ecological interactions threaten kelp forest persistence.
    Provost EJ; Kelaher BP; Dworjanyn SA; Russell BD; Connell SD; Ghedini G; Gillanders BM; Figueira W; Coleman MA
    Glob Chang Biol; 2017 Jan; 23(1):353-361. PubMed ID: 27392308
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Macroalgal forest vs sea urchin barren: Patterns of macro-zoobenthic diversity in a large-scale Mediterranean study.
    Pinna S; Piazzi L; Ceccherelli G; Castelli A; Costa G; Curini-Galletti M; Gianguzza P; Langeneck J; Manconi R; Montefalcone M; Pipitone C; Rosso A; Bonaviri C
    Mar Environ Res; 2020 Jul; 159():104955. PubMed ID: 32250878
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploitation and recovery of a sea urchin predator has implications for the resilience of southern California kelp forests.
    Hamilton SL; Caselle JE
    Proc Biol Sci; 2015 Jan; 282(1799):20141817. PubMed ID: 25500572
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Context-dependent effects of fishing: variation in trophic cascades across environmental gradients.
    Shears NT; Babcock RC; Salomon AK
    Ecol Appl; 2008 Dec; 18(8):1860-73. PubMed ID: 19263884
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Odor-active compounds from the gonads of Mesocentrotus nudus sea urchins fed Saccharina japonica kelp.
    Takagi S; Sato Y; Kokubun A; Inomata E; Agatsuma Y
    PLoS One; 2020; 15(4):e0231673. PubMed ID: 32298339
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Echinoderms display morphological and behavioural phenotypic plasticity in response to their trophic environment.
    Hughes AD; Brunner L; Cook EJ; Kelly MS; Wilson B
    PLoS One; 2012; 7(8):e41243. PubMed ID: 22870211
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Macroalgae and interspecific alarm cues regulate behavioral interactions between sea urchins and sea cucumbers.
    Sun J; Yu Y; Zhao Z; Tian R; Li X; Chang Y; Zhao C
    Sci Rep; 2022 Mar; 12(1):3971. PubMed ID: 35273278
    [TBL] [Abstract][Full Text] [Related]  

  • 37. More severe disturbance regimes drive the shift of a kelp forest to a sea urchin barren in south-eastern Australia.
    Carnell PE; Keough MJ
    Sci Rep; 2020 Jul; 10(1):11272. PubMed ID: 32647344
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Warmer temperatures reduce the influence of an important keystone predator.
    Bonaviri C; Graham M; Gianguzza P; Shears NT
    J Anim Ecol; 2017 May; 86(3):490-500. PubMed ID: 28075025
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Predation cues rather than resource availability promote cryptic behaviour in a habitat-forming sea urchin.
    Spyksma AJ; Taylor RB; Shears NT
    Oecologia; 2017 Mar; 183(3):821-829. PubMed ID: 28091726
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ocean warming undermines the recovery resilience of New England kelp forests following a fishery-induced trophic cascade.
    Suskiewicz TS; Byrnes JEK; Steneck RS; Russell R; Wilson CJ; Rasher DB
    Ecology; 2024 Jul; 105(7):e4334. PubMed ID: 38887829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.