BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 33297389)

  • 1. A Robust Feature Extraction Model for Human Activity Characterization Using 3-Axis Accelerometer and Gyroscope Data.
    Ahmed Bhuiyan R; Ahmed N; Amiruzzaman M; Islam MR
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33297389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Human Activity Recognition Based on Smartphone Sensor Data Using Hybrid Feature Selection Model.
    Ahmed N; Rafiq JI; Islam MR
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Activity-Aware Sampling Scheme for Mobile Phones in Activity Recognition.
    Chen Z; Chen J; Huang X
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32294935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Guided regularized random forest feature selection for smartphone based human activity recognition.
    Thakur D; Biswas S
    J Ambient Intell Humaniz Comput; 2023; 14(7):9767-9779. PubMed ID: 35601253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human Activity Recognition Using Inertial Sensors in a Smartphone: An Overview.
    Sousa Lima W; Souto E; El-Khatib K; Jalali R; Gama J
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31330919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MBOSS: A Symbolic Representation of Human Activity Recognition Using Mobile Sensors.
    Montero Quispe KG; Sousa Lima W; Macêdo Batista D; Souto E
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Multi-Layer Classifier Model XR-KS of Human Activity Recognition for the Problem of Similar Human Activity.
    Tan Q; Qin Y; Tang R; Wu S; Cao J
    Sensors (Basel); 2023 Dec; 23(23):. PubMed ID: 38067987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smartphone Based Human Activity Recognition with Feature Selection and Dense Neural Network.
    Bashar SK; Al Fahim A; Chon KH
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():5888-5891. PubMed ID: 33019314
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Feature selection for wearable smartphone-based human activity recognition with able bodied, elderly, and stroke patients.
    Capela NA; Lemaire ED; Baddour N
    PLoS One; 2015; 10(4):e0124414. PubMed ID: 25885272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human Activity Recognition Using Attention-Mechanism-Based Deep Learning Feature Combination.
    Akter M; Ansary S; Khan MA; Kim D
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420881
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Domain Knowledge for Interpretable and Competitive Multi-Class Human Activity Recognition.
    Scheurer S; Tedesco S; Brown KN; O'Flynn B
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Public Domain Dataset for Real-Life Human Activity Recognition Using Smartphone Sensors.
    Garcia-Gonzalez D; Rivero D; Fernandez-Blanco E; Luaces MR
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32295028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wrapper-based deep feature optimization for activity recognition in the wearable sensor networks of healthcare systems.
    Sahoo KK; Ghosh R; Mallik S; Roy A; Singh PK; Zhao Z
    Sci Rep; 2023 Jan; 13(1):965. PubMed ID: 36653370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring Student Activities with Smartwatches: On the Academic Performance Enhancement.
    Herrera-Alcántara O; Barrera-Animas AY; González-Mendoza M; Castro-Espinoza F
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30987130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using a Hybrid Neural Network and a Regularized Extreme Learning Machine for Human Activity Recognition with Smartphone and Smartwatch.
    Tan TH; Shih JY; Liu SH; Alkhaleefah M; Chang YL; Gochoo M
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992065
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Applying Multivariate Segmentation Methods to Human Activity Recognition From Wearable Sensors' Data.
    Li K; Habre R; Deng H; Urman R; Morrison J; Gilliland FD; Ambite JL; Stripelis D; Chiang YY; Lin Y; Bui AA; King C; Hosseini A; Vliet EV; Sarrafzadeh M; Eckel SP
    JMIR Mhealth Uhealth; 2019 Feb; 7(2):e11201. PubMed ID: 30730297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Cascade Ensemble Learning Model for Human Activity Recognition with Smartphones.
    Xu S; Tang Q; Jin L; Pan Z
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31109126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Robust Deep Learning Approach for Position-Independent Smartphone-Based Human Activity Recognition.
    Almaslukh B; Artoli AM; Al-Muhtadi J
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30388855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coarse-Fine Convolutional Deep-Learning Strategy for Human Activity Recognition.
    Avilés-Cruz C; Ferreyra-Ramírez A; Zúñiga-López A; Villegas-Cortéz J
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30935117
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Smartphone Lightweight Method for Human Activity Recognition Based on Information Theory.
    Bragança H; Colonna JG; Lima WS; Souto E
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32230830
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.