These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 33297545)

  • 1. Enhanced Terahertz Amplification Based on Photo-Excited Graphene-Dielectric Hybrid Metasurface.
    Guan S; Cheng J; Chen T; Chang S
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33297545
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimizing broadband terahertz modulation with hybrid graphene/metasurface structures.
    Shi SF; Zeng B; Han HL; Hong X; Tsai HZ; Jung HS; Zettl A; Crommie MF; Wang F
    Nano Lett; 2015 Jan; 15(1):372-7. PubMed ID: 25483819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards loss compensated and lasing terahertz metamaterials based on optically pumped graphene.
    Weis P; Garcia-Pomar JL; Rahm M
    Opt Express; 2014 Apr; 22(7):8473-89. PubMed ID: 24718220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental realization of a terahertz all-dielectric metasurface absorber.
    Liu X; Fan K; Shadrivov IV; Padilla WJ
    Opt Express; 2017 Jan; 25(1):191-201. PubMed ID: 28085806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photo-Excited Metasurface for Tunable Terahertz Reflective Circular Polarization Conversion and Anomalous Beam Deflection at Two Frequencies Independently.
    Xu Z; Ni C; Cheng Y; Dong L; Wu L
    Nanomaterials (Basel); 2023 Jun; 13(12):. PubMed ID: 37368276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene-based terahertz bias-driven negative-conductivity metasurface.
    Li G; Wang G; Yang T; Zhang Y; Shen J; Zhang B
    Nanoscale Adv; 2022 Aug; 4(16):3342-3352. PubMed ID: 36131710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optically tunable terahertz chiral metasurface based on multi-layered graphene.
    Masyukov M; Vozianova A; Grebenchukov A; Gubaidullina K; Zaitsev A; Khodzitsky M
    Sci Rep; 2020 Feb; 10(1):3157. PubMed ID: 32081873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free terahertz microfluidic biosensor for sensitive DNA detection using graphene-metasurface hybrid structures.
    Zhou R; Wang C; Huang Y; Huang K; Wang Y; Xu W; Xie L; Ying Y
    Biosens Bioelectron; 2021 Sep; 188():113336. PubMed ID: 34022719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intervalley Scattering Induced Terahertz Field Enhancement in Graphene Metasurface.
    Gong Y; Quan B; Hu F; Zhang L; Jiang M; Lin S
    Nano Lett; 2023 Dec; 23(23):11051-11056. PubMed ID: 38088140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bi-functional polarization conversion in hybrid graphene-dielectric metasurfaces.
    Guan S; Cheng J; Chen T; Chang S
    Opt Lett; 2019 Dec; 44(23):5683-5686. PubMed ID: 31774753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable resonance of a graphene-perovskite terahertz metasurface.
    Li G; Wang G; Zhang Y; Shen J; Zhang B
    Nanoscale Adv; 2023 Jan; 5(3):756-766. PubMed ID: 36756529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifunctional reflective dielectric metasurface in the terahertz region.
    Li JS; Zhou C
    Opt Express; 2020 Jul; 28(15):22679-22689. PubMed ID: 32752524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconfigurable Multifunctional Metasurface Hybridized with Vanadium Dioxide at Terahertz Frequencies.
    Wang L; Hong W; Deng L; Li S; Zhang C; Zhu J; Wang H
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30347715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Terahertz surface plasmons in optically pumped graphene structures.
    Dubinov AA; Aleshkin VY; Mitin V; Otsuji T; Ryzhii V
    J Phys Condens Matter; 2011 Apr; 23(14):145302. PubMed ID: 21441654
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Polarization-Insensitive and Wide-Angle Terahertz Absorber with Ring-Porous Patterned Graphene Metasurface.
    Shen H; Liu F; Liu C; Zeng D; Guo B; Wei Z; Wang F; Tan C; Huang X; Meng H
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32707727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Terahertz radiation in graphene hyperbolic medium excited by an electric dipole.
    Feng X; Gong S; Zhong R; Zhao T; Hu M; Zhang C; Liu S
    Opt Lett; 2018 Mar; 43(5):1187-1190. PubMed ID: 29489812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Terahertz amplification and lasing by using transverse electric modes in a two-layer-graphene-dielectric waveguide structure with direct current.
    Moiseenko IM; Popov VV; Fateev DV
    J Phys Condens Matter; 2023 Apr; 35(25):. PubMed ID: 36963112
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Symmetry enhanced non-reciprocal polarization rotation in a terahertz metal-graphene metasurface.
    Ottomaniello A; Zanotto S; Baldacci L; Pitanti A; Bianco F; Tredicucci A
    Opt Express; 2018 Feb; 26(3):3328-3340. PubMed ID: 29401862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorinated graphene grating metasurface for terahertz dark state excitation.
    Valynets NI; Paddubskaya AG; Sysoev VI; Gorodetskiy DV; Bulusheva LG; Okotrub AV
    Nanotechnology; 2023 Feb; 34(18):. PubMed ID: 36716476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable dual-band terahertz absorber with all-dielectric configuration based on graphene.
    Cai Y; Guo Y; Zhou Y; Huang X; Yang G; Zhu J
    Opt Express; 2020 Oct; 28(21):31524-31534. PubMed ID: 33115124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.