These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 33297680)

  • 21. Excited state properties of diiron dithiolate hydrides: implications in the unsensitized photocatalysis of H2 evolution.
    Bertini L; Fantucci P; De Gioia L; Zampella G
    Inorg Chem; 2013 Sep; 52(17):9826-41. PubMed ID: 23952259
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cationic heteroleptic cyclometalated iridium complexes with 1-pyridylimidazo[1,5-alpha]pyridine ligands: exploitation of an efficient intersystem crossing.
    Volpi G; Garino C; Salassa L; Fiedler J; Hardcastle KI; Gobetto R; Nervi C
    Chemistry; 2009 Jun; 15(26):6415-27. PubMed ID: 19462384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phenolate and phenoxyl radical complexes of Cu(II) and Co(III), bearing a new redox active N,O-phenol-pyrazole ligand.
    Zats GM; Arora H; Lavi R; Yufit D; Benisvy L
    Dalton Trans; 2011 Nov; 40(41):10889-96. PubMed ID: 21743937
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of Nitrogenase H
    Khadka N; Milton RD; Shaw S; Lukoyanov D; Dean DR; Minteer SD; Raugei S; Hoffman BM; Seefeldt LC
    J Am Chem Soc; 2017 Sep; 139(38):13518-13524. PubMed ID: 28851217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Iridium-catalyzed borylation of benzene with diboron. Theoretical elucidation of catalytic cycle including unusual iridium(v) intermediate.
    Tamura H; Yamazaki H; Sato H; Sakaki S
    J Am Chem Soc; 2003 Dec; 125(51):16114-26. PubMed ID: 14678004
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Formation and reactivity of a porphyrin iridium hydride in water: acid dissociation constants and equilibrium thermodynamics relevant to Ir-H, Ir-OH, and Ir-CH2- bond dissociation energetics.
    Bhagan S; Wayland BB
    Inorg Chem; 2011 Nov; 50(21):11011-20. PubMed ID: 21999645
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Iridium Complexes with Proton-Responsive Azole-Type Ligands as Effective Catalysts for CO
    Suna Y; Himeda Y; Fujita E; Muckerman JT; Ertem MZ
    ChemSusChem; 2017 Nov; 10(22):4535-4543. PubMed ID: 28985455
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanism of the mild functionalization of arenes by diboron reagents catalyzed by iridium complexes. Intermediacy and chemistry of bipyridine-ligated iridium trisboryl complexes.
    Boller TM; Murphy JM; Hapke M; Ishiyama T; Miyaura N; Hartwig JF
    J Am Chem Soc; 2005 Oct; 127(41):14263-78. PubMed ID: 16218621
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ligand noninnocence of thiolate/disulfide in dinuclear copper complexes: solvent-dependent redox isomerization and proton-coupled electron transfer.
    Thomas AM; Lin BL; Wasinger EC; Stack TD
    J Am Chem Soc; 2013 Dec; 135(50):18912-9. PubMed ID: 24279864
    [TBL] [Abstract][Full Text] [Related]  

  • 30. New Rh2(II,II) Architecture for the Catalytic Reduction of H⁺.
    White TA; Witt SE; Li Z; Dunbar KR; Turro C
    Inorg Chem; 2015 Oct; 54(20):10042-8. PubMed ID: 26406159
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The underappreciated influence of ancillary halide on metal-ligand proton tautomerism.
    Jain AK; Gau MR; Carroll PJ; Goldberg KI
    Chem Sci; 2022 Jul; 13(26):7837-7845. PubMed ID: 35865898
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mapping free energy regimes in electrocatalytic reductions to screen transition metal-based catalysts.
    Ramakrishnan S; Moretti RA; Chidsey CED
    Chem Sci; 2019 Aug; 10(32):7649-7658. PubMed ID: 31588316
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reductive Binding and Ligand-Based Redox Transformations of Nitrosobenzene at a Dinickel(II) Core.
    Ferretti E; Dechert S; Meyer F
    Inorg Chem; 2019 Apr; 58(8):5154-5162. PubMed ID: 30907585
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heteroscorpionate-based Co2+, Zn2+, and Cu2+ complexes: coordination behavior, aerobic oxidation, and hydrogen sulfide detection.
    Strianese M; Milione S; Bertolasi V; Pellecchia C; Grassi A
    Inorg Chem; 2011 Feb; 50(3):900-10. PubMed ID: 21214208
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metal-ligand cooperation in catalytic intramolecular hydroamination: a computational study of iridium-pyrazolato cooperative activation of aminoalkenes.
    Tobisch S
    Chemistry; 2012 Jun; 18(23):7248-62. PubMed ID: 22549963
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Isolation, observation, and computational modeling of proposed intermediates in catalytic proton reductions with the hydrogenase mimic Fe2(CO)6S2C6H4.
    Wright RJ; Zhang W; Yang X; Fasulo M; Tilley TD
    Dalton Trans; 2012 Jan; 41(1):73-82. PubMed ID: 22031098
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computational Study of Formic Acid Dehydrogenation Catalyzed by Al(III)-Bis(imino)pyridine.
    Lu QQ; Yu HZ; Fu Y
    Chemistry; 2016 Mar; 22(13):4584-91. PubMed ID: 26879469
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Heteroleptic Magnesium
    Mandal C; Joshi S; Mishra S; Mukherjee D
    Inorg Chem; 2024 Aug; 63(34):15692-15704. PubMed ID: 39110541
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomimetic model featuring the NH proton and bridging hydride related to a proposed intermediate in enzymatic H(2) production by Fe-only hydrogenase.
    Chiang MH; Liu YC; Yang ST; Lee GH
    Inorg Chem; 2009 Aug; 48(16):7604-12. PubMed ID: 19601586
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Metal-ligand cooperation in C-H and H2 activation by an electron-rich PNP Ir(I) system: facile ligand dearomatization-aromatization as key steps.
    Ben-Ari E; Leitus G; Shimon LJ; Milstein D
    J Am Chem Soc; 2006 Dec; 128(48):15390-1. PubMed ID: 17132002
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.