These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 33297680)
61. Proton-Assisted Mechanism of NO Reduction on a Dinuclear Ruthenium Complex. Suzuki T; Tanaka H; Shiota Y; Sajith PK; Arikawa Y; Yoshizawa K Inorg Chem; 2015 Aug; 54(15):7181-91. PubMed ID: 26186365 [TBL] [Abstract][Full Text] [Related]
62. Modeling the active sites in metalloenzymes. 3. Density functional calculations on models for [Fe]-hydrogenase: structures and vibrational frequencies of the observed redox forms and the reaction mechanism at the Diiron Active Center. Cao Z; Hall MB J Am Chem Soc; 2001 Apr; 123(16):3734-42. PubMed ID: 11457105 [TBL] [Abstract][Full Text] [Related]
63. Oxygen Reduction with a Bifunctional Iridium Dihydride Complex. Schiwek C; Meiners J; Förster M; Würtele C; Diefenbach M; Holthausen MC; Schneider S Angew Chem Int Ed Engl; 2015 Dec; 54(50):15271-5. PubMed ID: 26511744 [TBL] [Abstract][Full Text] [Related]
64. Role of Ligand Protonation in Dihydrogen Evolution from a Pentamethylcyclopentadienyl Rhodium Catalyst. Johnson SI; Gray HB; Blakemore JD; Goddard WA Inorg Chem; 2017 Sep; 56(18):11375-11386. PubMed ID: 28862433 [TBL] [Abstract][Full Text] [Related]
65. Spectroscopic and biological studies of new mononuclear metal complexes of a bidentate NN and NO hydrazone-oxime ligand derived from egonol. Babahan I; Emirdağ-Öztürk S; Poyrazoğlu-Çoban E Spectrochim Acta A Mol Biomol Spectrosc; 2015 Apr; 141():300-6. PubMed ID: 25686861 [TBL] [Abstract][Full Text] [Related]
66. Reductive Cleavage of CO2 by Metal-Ligand-Cooperation Mediated by an Iridium Pincer Complex. Feller M; Gellrich U; Anaby A; Diskin-Posner Y; Milstein D J Am Chem Soc; 2016 May; 138(20):6445-54. PubMed ID: 27124097 [TBL] [Abstract][Full Text] [Related]
67. Electrochemical and theoretical investigations of the role of the appended base on the reduction of protons by [Fe2(CO)4(κ2-PNP(R)(μ-S(CH2)3S] (PNP(R) ={Ph2PCH2}2NR, R=Me, Ph). Lounissi S; Zampella G; Capon JF; De Gioia L; Matoussi F; Mahfoudhi S; Pétillon FY; Schollhammer P; Talarmin J Chemistry; 2012 Aug; 18(35):11123-38. PubMed ID: 22807404 [TBL] [Abstract][Full Text] [Related]
68. Two hydrogen ligands on tetrairidium clusters: a relativistic density functional study. Krüger S; Bussai C; Genest A; Rösch N Phys Chem Chem Phys; 2006 Aug; 8(29):3391-8. PubMed ID: 16855717 [TBL] [Abstract][Full Text] [Related]
69. Investigation and enhancement of the stability and performance of water reduction systems based on cyclometalated iridium(III) complexes. Hansen S; Pohl MM; Klahn M; Spannenberg A; Beweries T ChemSusChem; 2013 Jan; 6(1):92-101. PubMed ID: 23147800 [TBL] [Abstract][Full Text] [Related]
70. Three-way cooperativity in d8 metal complexes with ligands displaying chemical and redox non-innocence. Deibel N; Hohloch S; Schweinfurth D; Weisser F; Grupp A; Sarkar B Chemistry; 2014 Nov; 20(46):15178-87. PubMed ID: 25251147 [TBL] [Abstract][Full Text] [Related]
71. Synthesis and fluorescence properties of lanthanide(III) complexes of a novel bis(pyrazolyl-carboxyl)pyridine-based ligand. Shi XM; Tang RR; Gu GL; Huang KL Spectrochim Acta A Mol Biomol Spectrosc; 2009 Feb; 72(1):198-203. PubMed ID: 19027353 [TBL] [Abstract][Full Text] [Related]
72. Protonation reactions of dinuclear pyrazolato iridium(I) complexes. Tejel C; Ciriano MA; Millaruelo M; López JA; Lahoz FJ; Oro LA Inorg Chem; 2003 Jul; 42(15):4750-8. PubMed ID: 12870968 [TBL] [Abstract][Full Text] [Related]
74. Synthesis, structural, photophysical and electrochemical studies of various d-metal complexes of btp [2,6-bis(1,2,3-triazol-4-yl)pyridine] ligands that give rise to the formation of metallo-supramolecular gels. Byrne JP; Kitchen JA; Kotova O; Leigh V; Bell AP; Boland JJ; Albrecht M; Gunnlaugsson T Dalton Trans; 2014 Jan; 43(1):196-209. PubMed ID: 24149846 [TBL] [Abstract][Full Text] [Related]
75. A computational mechanistic investigation of hydrogen production in water using the [Rh(III)(dmbpy)2Cl2](+)/[Ru(II)(bpy)3](2+)/ascorbic acid photocatalytic system. Kayanuma M; Stoll T; Daniel C; Odobel F; Fortage J; Deronzier A; Collomb MN Phys Chem Chem Phys; 2015 Apr; 17(16):10497-509. PubMed ID: 25804803 [TBL] [Abstract][Full Text] [Related]
76. H2 activation by a (PNP)Ir(C6H5) complex via the dearomatization/aromatization process of the PNP ligand: a computational study. Zeng G; Guo Y; Li S Inorg Chem; 2009 Nov; 48(21):10257-63. PubMed ID: 19780609 [TBL] [Abstract][Full Text] [Related]
77. Mechanism of electrocatalytic hydrogen production by a di-iron model of iron-iron hydrogenase: a density functional theory study of proton dissociation constants and electrode reduction potentials. Surawatanawong P; Tye JW; Darensbourg MY; Hall MB Dalton Trans; 2010 Mar; 39(12):3093-104. PubMed ID: 20221544 [TBL] [Abstract][Full Text] [Related]
78. Molecular Mimics of Heterogeneous Metal Phosphides: Thermochemistry, Hydride-Proton Isomerism, and HER Reactivity. Buss JA; Hirahara M; Ueda Y; Agapie T Angew Chem Int Ed Engl; 2018 Dec; 57(50):16329-16333. PubMed ID: 30311419 [TBL] [Abstract][Full Text] [Related]
79. DFT Study on the Mechanism of Hydrogen Storage Based on the Formate-Bicarbonate Equilibrium Catalyzed by an Ir-NHC Complex: An Elusive Intramolecular C-H Activation. Fehér PP; Horváth H; Joó F; Purgel M Inorg Chem; 2018 May; 57(10):5903-5914. PubMed ID: 29701960 [TBL] [Abstract][Full Text] [Related]
80. Synthetic, electrochemical, and theoretical studies of tetrairidium clusters bearing mono- and bis[60]fullerene ligands. Park BK; Lee G; Kim KH; Kang H; Lee CY; Miah MA; Jung J; Han YK; Park JT J Am Chem Soc; 2006 Aug; 128(34):11160-72. PubMed ID: 16925434 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]