These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 33297718)
1. Novel Primer Sets for Rapid Detection of Kuzdraliński A; Leśniowska-Nowak J; Nowak M; Kawęcka M; Kot A; Różaniecka K; Ostrowska A; Muszyńska M; Waśko A; Szczerba H Plant Dis; 2021 Feb; 105(2):251-254. PubMed ID: 33297718 [No Abstract] [Full Text] [Related]
2. The wheat-Septoria conflict: a new front opening up? O'Driscoll A; Kildea S; Doohan F; Spink J; Mullins E Trends Plant Sci; 2014 Sep; 19(9):602-10. PubMed ID: 24957882 [TBL] [Abstract][Full Text] [Related]
3. Detection of Mycosphaerella graminicola in wheat leaves by a microsatellite dinucleotide specific-primer. Abd-Elsalam K; Bahkali AH; Moslem M; De Wit PJ; Verreet JA Int J Mol Sci; 2011 Jan; 12(1):682-93. PubMed ID: 21340008 [TBL] [Abstract][Full Text] [Related]
4. Zymoseptoria ardabiliae and Z. pseudotritici, two progenitor species of the septoria tritici leaf blotch fungus Z. tritici (synonym: Mycosphaerella graminicola). Stukenbrock EH; Quaedvlieg W; Javan-Nikhah M; Zala M; Crous PW; McDonald BA Mycologia; 2012; 104(6):1397-407. PubMed ID: 22675045 [TBL] [Abstract][Full Text] [Related]
5. EVIDENCE FOR REDUCED SEXUAL REPRODUCTION OF ZYMOSEPTORIA TRITICI FOLLOWING TREATMENT WITH FLUXAPYROXAD AND IMPLICATIONS FOR INITIAL INFECTION OF WHEAT CROPS. Smith J; Waterhouse S; Paveley N Commun Agric Appl Biol Sci; 2014; 79(3):385-95. PubMed ID: 26080473 [TBL] [Abstract][Full Text] [Related]
6. Genetic diversity and population structure of Zymoseptoria tritici in Ethiopia as revealed by microsatellite markers. Mekonnen T; Haileselassie T; Goodwin SB; Tesfayea K Fungal Genet Biol; 2020 Aug; 141():103413. PubMed ID: 32442667 [TBL] [Abstract][Full Text] [Related]
7. Dissecting the Molecular Interactions between Wheat and the Fungal Pathogen Zymoseptoria tritici. Kettles GJ; Kanyuka K Front Plant Sci; 2016; 7():508. PubMed ID: 27148331 [TBL] [Abstract][Full Text] [Related]
8. Presence of ice-nucleating Pseudomonas on wheat leaves promotes Septoria tritici blotch disease (Zymoseptoria tritici) via a mutually beneficial interaction. Fones HN Sci Rep; 2020 Oct; 10(1):17738. PubMed ID: 33082401 [TBL] [Abstract][Full Text] [Related]
9. How Knowledge of Pathogen Population Biology Informs Management of Septoria Tritici Blotch. McDonald BA; Mundt CC Phytopathology; 2016 Sep; 106(9):948-55. PubMed ID: 27111799 [TBL] [Abstract][Full Text] [Related]
10. Control of Zymoseptoria tritici cause of septoria tritici blotch of wheat using antifungal Lactobacillus strains. Lynch KM; Zannini E; Guo J; Axel C; Arendt EK; Kildea S; Coffey A J Appl Microbiol; 2016 Aug; 121(2):485-94. PubMed ID: 27155088 [TBL] [Abstract][Full Text] [Related]
11. Isolate-Specific Responses of the Nonhost Grass Reilly A; Karki SJ; Twamley A; Tiley AMM; Kildea S; Feechan A Phytopathology; 2021 Feb; 111(2):356-368. PubMed ID: 32720875 [TBL] [Abstract][Full Text] [Related]
12. Apoplastic recognition of multiple candidate effectors from the wheat pathogen Zymoseptoria tritici in the nonhost plant Nicotiana benthamiana. Kettles GJ; Bayon C; Canning G; Rudd JJ; Kanyuka K New Phytol; 2017 Jan; 213(1):338-350. PubMed ID: 27696417 [TBL] [Abstract][Full Text] [Related]
13. The impact of Septoria tritici Blotch disease on wheat: An EU perspective. Fones H; Gurr S Fungal Genet Biol; 2015 Jun; 79():3-7. PubMed ID: 26092782 [TBL] [Abstract][Full Text] [Related]
14. Two Novel Allioui N; Driss F; Dhouib H; Jlail L; Tounsi S; Frikha-Gargouri O Biomed Res Int; 2021; 2021():6611657. PubMed ID: 34195272 [TBL] [Abstract][Full Text] [Related]
15. Sexual reproduction of Zymoseptoria tritici on durum wheat in Tunisia revealed by presence of airborne inoculum, fruiting bodies and high levels of genetic diversity. Hassine M; Siah A; Hellin P; Cadalen T; Halama P; Hilbert JL; Hamada W; Baraket M; Yahyaoui A; Legrève A; Duvivier M Fungal Biol; 2019 Oct; 123(10):763-772. PubMed ID: 31542193 [TBL] [Abstract][Full Text] [Related]
16. A role for random, humidity-dependent epiphytic growth prior to invasion of wheat by Zymoseptoria tritici. Fones HN; Eyles CJ; Kay W; Cowper J; Gurr SJ Fungal Genet Biol; 2017 Sep; 106():51-60. PubMed ID: 28694096 [TBL] [Abstract][Full Text] [Related]
17. Genetic Dissection of Resistance to the Three Fungal Plant Pathogens Stadlmeier M; Jørgensen LN; Corsi B; Cockram J; Hartl L; Mohler V G3 (Bethesda); 2019 May; 9(5):1745-1757. PubMed ID: 30902891 [TBL] [Abstract][Full Text] [Related]
18. Genetic Analysis Using a Multi-Parent Wheat Population Identifies Novel Sources of Septoria Tritici Blotch Resistance. Riaz A; KockAppelgren P; Hehir JG; Kang J; Meade F; Cockram J; Milbourne D; Spink J; Mullins E; Byrne S Genes (Basel); 2020 Aug; 11(8):. PubMed ID: 32759792 [No Abstract] [Full Text] [Related]
19. Sources of resistance and susceptibility to Septoria tritici blotch of wheat. Arraiano LS; Brown JK Mol Plant Pathol; 2017 Feb; 18(2):276-292. PubMed ID: 27558898 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of plant resistance inducers on different winter soft wheat cultivars against Septoria leaf blotch. Ors M; Siah A; Randoux B; Selim S; Boizet F; Couleaud G; Maumene C; Halama P; Reignault P Commun Agric Appl Biol Sci; 2012; 77(3):117-24. PubMed ID: 23878965 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]