These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 33297946)
1. RBPsuite: RNA-protein binding sites prediction suite based on deep learning. Pan X; Fang Y; Li X; Yang Y; Shen HB BMC Genomics; 2020 Dec; 21(1):884. PubMed ID: 33297946 [TBL] [Abstract][Full Text] [Related]
2. Decoding protein binding landscape on circular RNAs with base-resolution transformer models. Wu H; Liu X; Fang Y; Yang Y; Huang Y; Pan X; Shen HB Comput Biol Med; 2024 Mar; 171():108175. PubMed ID: 38402841 [TBL] [Abstract][Full Text] [Related]
3. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach. Pan X; Shen HB BMC Bioinformatics; 2017 Feb; 18(1):136. PubMed ID: 28245811 [TBL] [Abstract][Full Text] [Related]
4. RNA-binding protein recognition based on multi-view deep feature and multi-label learning. Yang H; Deng Z; Pan X; Shen HB; Choi KS; Wang L; Wang S; Wu J Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32808039 [TBL] [Abstract][Full Text] [Related]
5. Prediction of RNA-protein interactions using a nucleotide language model. Yamada K; Hamada M Bioinform Adv; 2022; 2(1):vbac023. PubMed ID: 36699410 [TBL] [Abstract][Full Text] [Related]
6. Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks. Pan X; Rijnbeek P; Yan J; Shen HB BMC Genomics; 2018 Jul; 19(1):511. PubMed ID: 29970003 [TBL] [Abstract][Full Text] [Related]
7. CRIP: predicting circRNA-RBP-binding sites using a codon-based encoding and hybrid deep neural networks. Zhang K; Pan X; Yang Y; Shen HB RNA; 2019 Dec; 25(12):1604-1615. PubMed ID: 31537716 [TBL] [Abstract][Full Text] [Related]
8. Identifying Cancer-Specific circRNA-RBP Binding Sites Based on Deep Learning. Wang Z; Lei X; Wu FX Molecules; 2019 Nov; 24(22):. PubMed ID: 31703384 [TBL] [Abstract][Full Text] [Related]
9. Recognizing binding sites of poorly characterized RNA-binding proteins on circular RNAs using attention Siamese network. Wu H; Pan X; Yang Y; Shen HB Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34297803 [TBL] [Abstract][Full Text] [Related]
10. circRNA-binding protein site prediction based on multi-view deep learning, subspace learning and multi-view classifier. Li H; Deng Z; Yang H; Pan X; Wei Z; Shen HB; Choi KS; Wang L; Wang S; Wu J Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34571539 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome-wide profiles of circular RNA and RNA-binding protein interactions reveal effects on circular RNA biogenesis and cancer pathway expression. Okholm TLH; Sathe S; Park SS; Kamstrup AB; Rasmussen AM; Shankar A; Chua ZM; Fristrup N; Nielsen MM; Vang S; Dyrskjøt L; Aigner S; Damgaard CK; Yeo GW; Pedersen JS Genome Med; 2020 Dec; 12(1):112. PubMed ID: 33287884 [TBL] [Abstract][Full Text] [Related]
12. Predicting dynamic cellular protein-RNA interactions by deep learning using in vivo RNA structures. Sun L; Xu K; Huang W; Yang YT; Li P; Tang L; Xiong T; Zhang QC Cell Res; 2021 May; 31(5):495-516. PubMed ID: 33623109 [TBL] [Abstract][Full Text] [Related]
13. A web server for identifying circRNA-RBP variable-length binding sites based on stacked generalization ensemble deep learning network. Wang Z; Lei X Methods; 2022 Sep; 205():179-190. PubMed ID: 35810958 [TBL] [Abstract][Full Text] [Related]
14. CRMSS: predicting circRNA-RBP binding sites based on multi-scale characterizing sequence and structure features. Zhang L; Lu C; Zeng M; Li Y; Wang J Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36511222 [TBL] [Abstract][Full Text] [Related]
15. Prediction of RBP binding sites on circRNAs using an LSTM-based deep sequence learning architecture. Wang Z; Lei X Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34415289 [TBL] [Abstract][Full Text] [Related]
16. A deep learning framework for modeling structural features of RNA-binding protein targets. Zhang S; Zhou J; Hu H; Gong H; Chen L; Cheng C; Zeng J Nucleic Acids Res; 2016 Feb; 44(4):e32. PubMed ID: 26467480 [TBL] [Abstract][Full Text] [Related]
17. CRIECNN: Ensemble convolutional neural network and advanced feature extraction methods for the precise forecasting of circRNA-RBP binding sites. Lasantha D; Vidanagamachchi S; Nallaperuma S Comput Biol Med; 2024 May; 174():108466. PubMed ID: 38615462 [TBL] [Abstract][Full Text] [Related]
18. HCRNet: high-throughput circRNA-binding event identification from CLIP-seq data using deep temporal convolutional network. Yang Y; Hou Z; Wang Y; Ma H; Sun P; Ma Z; Wong KC; Li X Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35189638 [TBL] [Abstract][Full Text] [Related]
19. RBP-TSTL is a two-stage transfer learning framework for genome-scale prediction of RNA-binding proteins. Peng X; Wang X; Guo Y; Ge Z; Li F; Gao X; Song J Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35649392 [TBL] [Abstract][Full Text] [Related]
20. Predicting circRNA-RBP Binding Sites Using a Hybrid Deep Neural Network. Liu L; Wei Y; Tan Z; Zhang Q; Sun J; Zhao Q Interdiscip Sci; 2024 Sep; 16(3):635-648. PubMed ID: 38381315 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]